Skip to main content

Advertisement

Log in

Investigation of the mechanism of action of deep brain stimulation for the treatment of Parkinson’s disease

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a severe, progressive, neurological disorder. PD is not a single disease, but rather resembles a syndrome. PD includes two types of pathogenesis (i.e., classical PD and new PD). Clinically, PD patients present with a range of motor symptoms including decreased spontaneous movement, bradykinesia, muscle rigidity, changes in speech, and resting tremors. PD patients also often exhibit non-motor symptoms such as fatigue, sleep disorders, and emotional and mental health disturbances. Deep brain stimulation (DBS) performed in clinical neurosurgery has demonstrated considerable efficacy in the treatment of dyskinesia that occurs in PD patients. However, the specific neural mechanism of DBS remains unknown and is limited by several shortcomings that have hampered the popularization and development of the procedure. To address this issue, this study established a theoretical model of DBS for PD to investigate and understand the mechanism of DBS using several artificial intelligence (AI) algorithms. This model was used to investigate both classical PD and unheard-of new PD. The research described in this paper was as follows: a single neuron was used to establish a theoretical model of the basal ganglia circuit and to simulate the characteristic indicators of the potential release of the basal ganglia circuit in both normal and PD states. The state of the deep brain electrical stimulation in PD was then analyzed to identify the critical electrical stimulation index and the optimal target. We showed that the use of AI algorithms such as particle swarm optimization and other AI algorithms was beneficial for more detailed exploration and understanding of the mechanisms of DBS compared to those used in previous studies. This discovery may lead to advances in DBS technology and provide better treatment options for neurological diseases such as PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Ashkan K, Rogers P, Bergman H, Ughratdar I (2017) Insights into the mechanisms of deep brain stimulation. Nat Rev Neurol 13(9):548–554

    Article  PubMed  Google Scholar 

  • Boaretto BRR, Manchein C, Prado TL, Lopes SR (2021) The role of individual neuron ion conductances in the synchronization processes of neuron networks. Neural Netw 137:97–105

    Article  CAS  PubMed  Google Scholar 

  • Brice A (1998) alpha-Synuclein gene and Parkinson’s disease. The French Parkinson’s Disease Study Group. Science 279(5354):1116–1117

    Article  CAS  Google Scholar 

  • Chatterjee I (2021) Artificial intelligence and patentability: review and discussions. Int J Mod Res 1(1):15–21

    Google Scholar 

  • Chen W, Xu ZM, Wang G, Chen SD (2012) Non-motor symptoms of Parkinson’s disease in China: a review of the literature. Parkinsonism Relat Disord 18(5):446–452

    Article  PubMed  Google Scholar 

  • de Paor AM, Lowery MM (2009) Analysis of the mechanism of action of deep brain stimulation using the concepts of dither injection and the equivalent nonlinearity. IEEE Trans Biomed Eng 56(11):2717–2720

    Article  PubMed  Google Scholar 

  • Deebak BD, Memon FH, Khowaja SA, Dev K, Wang W, Nawab, (2022) In the digital age of 5G networks: seamless privacy-preserving authentication for cognitive-inspired Internet of Medical Things. IEEE Trans Industr Inf 18(12):8916–8923

    Article  Google Scholar 

  • Dhar S, Singh P, Singh J, Yadav A (2020) Optimization of discharge patterns in Parkinson condition in external globus pallidus model of basal ganglia using particle swarm optimization algorithm. In: Singh P, Gupta RK, Ray K, Bandyopadhyay A (eds) Proceedings of International Conference on Trends in Computational and Cognitive Engineering: TCCE 2019, vol 1169. Springer, pp 281–291

  • Dhiman G, Kaur A (2019) STOA: a bio-inspired based optimization algorithm for industrial engineering problems. Eng Appl Artif Intell 82:148–174

    Article  Google Scholar 

  • Dhiman G, Kumar V (2018) Emperor penguin optimizer: a bio-inspired algorithm for engineering problems. Knowl-Based Syst 159:20–50

    Article  Google Scholar 

  • Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, Marshall FJ, Ravina BM, Schifitto G, Siderowf A, Tanner CM (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68(5):384–386

    Article  CAS  PubMed  Google Scholar 

  • Elsanadidy E, Mosa IM, Hou B, Schmid T, El-Kady MF, Khan RS, Haeberlin A, Tzingounis AV, Rusling JF (2022) Self-sustainable intermittent deep brain stimulator. Cell Rep Phys Sci 3(10):101099

    Article  Google Scholar 

  • Follett KA, Weaver FM, Stern M, Hur K, Harris CL, Luo P, Marks WJ Jr, Rothlind J, Sagher O, Moy C, Pahwa R, Burchiel K, Hogarth P, Lai EC, Duda JE, Holloway K, Samii A, Horn S, Bronstein JM, Stoner G, Starr PA, Simpson R, Baltuch G, De Salles A, Huang GD, Reda DJ (2010) Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med 362(22):2077–2091

    Article  CAS  PubMed  Google Scholar 

  • Gunalan K, Howell B, McIntyre CC (2018) Quantifying axonal responses in patient-specific models of subthalamic deep brain stimulation. Neuroimage 172:263–277

    Article  PubMed  Google Scholar 

  • Gupta VK, Shukla SK, Rawat RS (2022) Crime tracking system and people’s safety in India using machine learning approaches. Int J Mod Res 2(1):1–7

    Google Scholar 

  • Hariz M, Blomstedt P (2022) Deep brain stimulation for Parkinson’s disease. J Intern Med 292(5):764–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joy M (2019) Deep brain stimulation. Brain stimulation: basic. Transl Clin Res Neuromodul 12(2):502–503

    Google Scholar 

  • Kaur S, Awasthi LK, Sangal AL, Dhiman G (2020) Tunicate Swarm Algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Eng Appl Artif Intell 90:103541

    Article  Google Scholar 

  • Kazakovtsev L, Rozhnov I, Shkaberina G, Orlov V (2020) K-means genetic algorithms with greedy genetic operators. Math Probl Eng 2020:1–16

    Article  Google Scholar 

  • Kujawska M, Kaushik A (2023) Exploring magneto-electric nanoparticles (MENPs): A platform for implanted deep brain stimulation. Neural Regen Res 18(1):129

    Article  PubMed  Google Scholar 

  • Kumar R, Dhiman G (2021) A comparative study of fuzzy optimization through fuzzy number. Int J Mod Res 1(1):1–14

    Google Scholar 

  • Lu C, Xu Z, Wang P, Fan J, Zhou X, Zhang Z, Xu S (2021) The pharmacology for zonisamide to treat Parkinson’s disease. Basic Clin Physiol Pharmacol 128:245–246

    Google Scholar 

  • Martínez-Fernández R, Máñez-Miró JU, Rodríguez-Rojas R, Del Álamo M, Shah BB, Hernández-Fernández F, Pineda-Pardo JA, Monje MHG, Fernández-Rodríguez B, Sperling SA, Mata-Marín D, Guida P, Alonso-Frech F, Obeso I, Gasca-Salas C, Vela-Desojo L, Elias WJ, Obeso JA (2020) Randomized trial of focused ultrasound subthalamotomy for Parkinson’s disease. N Engl J Med 383(26):2501–2513

    Article  PubMed  Google Scholar 

  • McConnell GC, So RQ, Hilliard JD, Lopomo P, Grill WM (2012) Effective deep brain stimulation suppresses low-frequency network oscillations in the basal ganglia by regularizing neural firing patterns. J Neurosci 32(45):15657–15668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGregor MM, Nelson AB (2019) Circuit mechanisms of Parkinson’s disease. Neuron 101(6):1042–1056

    Article  CAS  PubMed  Google Scholar 

  • McIntyre CC, Richardson AG, Grill WM (2002) Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle. J Neurophysiol 87(2):995–1006

    Article  PubMed  Google Scholar 

  • Moffitt MA, McIntyre CC, Grill WM (2004) Prediction of myelinated nerve fiber stimulation thresholds: limitations of linear models. IEEE Trans Biomed Eng 51(2):229–236

    Article  PubMed  Google Scholar 

  • Odekerken VJ, Boel JA, Schmand BA, de Haan RJ, Figee M, van den Munckhof P, Schuurman PR, de Bie RM (2016) GPi vs STN deep brain stimulation for Parkinson disease: Three-year follow-up. Neurology 86(8):755–761

    Article  CAS  PubMed  Google Scholar 

  • Oxenford S, Roediger J, Neudorfer C, Milosevic L, Güttler C, Spindler P, Vajkoczy P, Neumann W-J, Kühn A, Horn A (2022) Lead-OR: a multimodal platform for deep brain stimulation surgery. Elife 11:e72929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pal K, Ghosh D, Gangopadhyay G (2021) Synchronization and metabolic energy consumption in stochastic Hodgkin–Huxley neurons: patch size and drug blockers. Neurocomputing 422:222–234

    Article  Google Scholar 

  • Pallàs M, Vázquez S, Sanfeliu C, Galdeano C, Griñán-Ferré C (2020) Soluble epoxide hydrolase inhibition to face neuroinflammation in Parkinson’s disease: a new therapeutic strategy. Biomolecules 10(5):703

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandya S, Thippa Reddy Gadekallu, Kumar P, Wang W, Mamoun Alazab (2022) InfusedHeart: a novel knowledge-infused learning framework for diagnosis of cardiovascular events. IEEE Trans Comput Soc Syst 1–10

  • Pavlides A, Hogan SJ, Bogacz R (2015) Computational models describing possible mechanisms for generation of excessive beta oscillations in Parkinson’s disease. PLoS Comput Biol 11(12):e1004609

    Article  PubMed  PubMed Central  Google Scholar 

  • Peterson EJ, Izad O, Tyler DJ (2011) Predicting myelinated axon activation using spatial characteristics of the extracellular field. J Neural Eng 8(4):046030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philip NS, Arulpragasam AR (2022) Reaching for the unreachable: low intensity focused ultrasound for non-invasive deep brain stimulation. Neuropsychopharmacology 48:251–252

    Article  PubMed Central  Google Scholar 

  • Reeve A, Simcox E, Turnbull D (2014) Ageing and Parkinson’s disease: Why is advancing age the biggest risk factor? Ageing Res Rev 14(100):19–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Pallares J, García-Garrote M, Parga JA, Labandeira-García JL (2023) Combined cell-based therapy strategies for the treatment of Parkinson’s disease: focus on mesenchymal stromal cells. Neural Regen Res 18(3):478–484

    Article  PubMed  Google Scholar 

  • Sarkar JL, V R, Majumder A, Pati B, Panigrahi CR., Wang W, Qureshi NMF, Su C, Dev K (2022) I-Health: SDN-based fog architecture for IIoT applications in healthcare. IEEE/ACM Trans Comput Biol Bioinform 1–8

  • Savica R, Grossardt BR, Bower JH, Ahlskog JE, Rocca WA (2013) Incidence and pathology of synucleinopathies and tauopathies related to parkinsonism. JAMA Neurol 70(7):859–866

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Kaur M (2015) Comparative analysis of particle swarm optimization and particle swarm optimization with aging leader and challengers towards benchmark functions. Int J Comput Appl 120(24):48–53

    Google Scholar 

  • Sharma T, Nair R, Gomathi S (2022) Breast cancer image classification using transfer learning and convolutional neural network. Int J Mod Res 2(1):8–16

    Google Scholar 

  • Smith Y, Wichmann T, Factor SA, DeLong MR (2012) Parkinson’s disease therapeutics: new developments and challenges since the introduction of levodopa. Neuropsychopharmacology 37(1):213–246

    Article  CAS  PubMed  Google Scholar 

  • Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D, Pierantozzi M, Brusa L, Scarnati E, Mazzone P (2007) Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain 130(Pt 6):1596–1607

    Article  PubMed  Google Scholar 

  • Swinnen B, Buijink AW, Piña-Fuentes D, de Bie RMA, Beudel M (2022) Diving into the subcortex: The potential of chronic subcortical sensing for unravelling basal ganglia function and optimization of deep brain stimulation. Neuroimage 254:119147

    Article  PubMed  Google Scholar 

  • Texier B, Prime M, Atamena D, Belenguer P, Szelechowski M (2023) Mortalin/Hspa9 involvement and therapeutic perspective in Parkinson’s disease. Neural Regen Res 18(2):293–298

    Article  CAS  PubMed  Google Scholar 

  • Venter G, Sobieszczanski-Sobieski J (2003) Particle swarm optimization. AIAA J 41(8):1583–1589

    Article  Google Scholar 

  • Wang H, Li Y, Jin D, Han Z (2021) Attentional Markov model for human mobility prediction. IEEE J Sel Areas Commun 39(7):2213–2225

    Article  Google Scholar 

  • Warner TT, Schapira AHV (2003) Genetic and environmental factors in the cause of Parkinson’s disease. Ann Neurol 53(S3):S16–S25

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Guo Y, Ma J (2022) Reproduce the biophysical function of chemical synapse by using a memristive synapse. Nonlinear Dyn 109(3):2063–2084

    Article  Google Scholar 

  • Yang Y, Wang W, Yin Z, Xu R, Zhou X, Kumar N, Mamoun Alazab, Thippa Reddy Gadekallu (2022) Mixed game-based AoI optimization for combating COVID-19 with AI bots 40(11):3122–3138

  • Yip CF, Ng WL, Yau CY (2018) A hidden Markov model for earthquake prediction. Stoch Environ Res Risk Assess 32:1415–1434

    Article  Google Scholar 

  • Yu L, Yu Y (2017) Energy-efficient neural information processing in individual neurons and neuronal networks. J Neurosci Res 95(11):2253–2266

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Xu Z, Chen Q (2011) A game model based on multi-attribute aggregation. Int J Intell Syst 26(4):323–339

    Article  Google Scholar 

  • Zhang ZX, Roman GC, Hong Z, Wu CB, Qu QM, Huang JB, Zhou B, Geng ZP, Wu JX, Wen HB, Zhao H, Zahner GE (2005) Parkinson’s disease in China: prevalence in Beijing, Xian, and Shanghai. Lancet 365(9459):595–597

    Article  PubMed  Google Scholar 

  • Zhang Z, Zhou X, Xu Z, Lu C, Xu S (2019) Dopamine channels with application. J Biomol Struct Dyn 37(S1):26–27

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to EditSprings (https://www.editsprings.cn) for the expert linguistic services provided.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Writing—original draft preparation [Tianhao Zhou]; conceptualization, writing—review and editing [Tianhao Zhou], [Wenchuan Xu]; formal analysis and investigation [Tianhao Zhou], [Weiyao Shi]; methodology [Tianhao Zhou], [Wenchuan Xu], [Weiyao Shi]; funding acquisition: [Tianhao Zhou]; resources [Tianhao Zhou]; supervision: [Wenchuan Xu], [Weiyao Shi].

Corresponding author

Correspondence to Tianhao Zhou.

Ethics declarations

Conflict of interest

The author(s) declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, T., Xu, W. & Shi, W. Investigation of the mechanism of action of deep brain stimulation for the treatment of Parkinson’s disease. Cogn Neurodyn 18, 581–595 (2024). https://doi.org/10.1007/s11571-023-10009-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-023-10009-5

Keywords

Navigation