Skip to main content

Deep Brain Stimulation for Parkinson Disease

  • Chapter
  • First Online:
Electroceuticals

Abstract

Deep brain stimulation (DBS) therapy is now considered one of the most important advances in the treatment of Parkinson disease (PD), a progressive neurodegenerative disorder. DBS improves the cardinal motor symptoms of PD (rest tremor, bradykinesia, rigidity), markedly reduces motor complications (dyskinesias and wearing off), and dramatically improves quality of life. In this chapter, we review how DBS came to be and present the current science behind how DBS works. Clinical indications and up-to-date evidence on clinical outcomes of DBS are presented. Finally, the risks and side effects of DBS, and advances in DBS technology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nussbaum RL, Ellis CE. Alzheimer’s disease and Parkinson’s disease. N Engl J Med. 2003;348(14):1356–64.

    Article  CAS  PubMed  Google Scholar 

  2. Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology. 2007;68(5):384–6.

    Article  CAS  PubMed  Google Scholar 

  3. Horsley V. Remarks on the surgery of the central nervous system. Br Med J. 1890;2(1562):1286–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Meyers R. Surgical procedures for postencephalitic tremor with notes on the physiology of premotor fibers. Arch Neurol Psychiatry. 1940;44:453–9.

    Google Scholar 

  5. Gildenberg PL. Spiegel and Wycis – the early years. Stereotact Funct Neurosurg. 2001;77(1–4):11–6.

    CAS  PubMed  Google Scholar 

  6. Speigel EA, Wycis HT, Marks M, Lee AJ. Stereotaxic apparatus for operations on the human brain. Science. 1947;106:349–50.

    Article  Google Scholar 

  7. Gildenberg PL. Evolution of basal ganglia surgery for movement disorders. Stereotact Funct Neurosurg. 2006;84(4):131–5.

    Article  PubMed  Google Scholar 

  8. Das K, Benzil DL, Rovit RL, Murali R, Couldwell WT, Irving S. Cooper (1922–1985): a pioneer in functional neurosurgery. J Neurosurg. 1998;89(5):865–73.

    Article  CAS  PubMed  Google Scholar 

  9. Cooper IS. Surgical alleviation of Parkinsonism; effects of occlusion of the anterior choroidal artery. J Am Geriatr Soc. 1954;2(11):691–718.

    Article  CAS  PubMed  Google Scholar 

  10. Spiegel EA, Wycis HT. Pallidothalamotomy in chorea. Arch Neurol Psychiatry. 1950;64(2):295–6.

    CAS  PubMed  Google Scholar 

  11. Wycis HT, Spiegel EA. The effect of thalamotomy and pallidotomy upon involuntary movements in chorea and athetosis. Surg Forum. 1950:329–32.

    Google Scholar 

  12. Svennilson E, Torvik A, Lowe R, Leksell L. Treatment of parkinsonism by stereotatic thermolesions in the pallidal region. A clinical evaluation of 81 cases. Acta Psychiatr Scand. 1960;35:358–77.

    Article  CAS  PubMed  Google Scholar 

  13. Hassler R, Riechert T, Mundinger F, Umbach W, Ganglberger JA. Physiological observations in stereotaxic operations in extrapyramidal motor disturbances. Brain. 1960;83:337–50.

    Article  CAS  PubMed  Google Scholar 

  14. Redfern RM. History of stereotactic surgery for Parkinson’s disease. Br J Neurosurg. 1989;3(3):271–304.

    Article  CAS  PubMed  Google Scholar 

  15. Andy OJ, Jurko MF, Sias Jr FR. Subthalamotomy in treatment of Parkinsonian tremor. J Neurosurg. 1963;20:860–70.

    Article  CAS  PubMed  Google Scholar 

  16. Schwalb JM, Hamani C. The history and future of deep brain stimulation. Neurotherapeutics. 2008;5(1):3–13.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yamashiro K, Tasker RR. Microstimulation for stereotactic neurosurgery. Stereotact Funct Neurosurg. 1990;54–55:168–71.

    Article  PubMed  Google Scholar 

  18. Tasker RR, Organ LW, Hawrylyshyn P. Sensory organization of the human thalamus. Appl Neurophysiol. 1976;39(3–4):139–53.

    PubMed  Google Scholar 

  19. Narabayashi H, Yokochi F, Nakajima Y. Levodopa-induced dyskinesia and thalamotomy. J Neurol Neurosurg Psychiatry. 1984;47(8):831–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Laitinen LV, Bergenheim AT, Hariz MI. Leksell’s posteroventral pallidotomy in the treatment of Parkinson’s disease. J Neurosurg. 1992;76(1):53–61.

    Article  CAS  PubMed  Google Scholar 

  21. Laitinen LV, Bergenheim AT, Hariz MI. Ventroposterolateral pallidotomy can abolish all parkinsonian symptoms. Stereotact Funct Neurosurg. 1992;58(1–4):14–21.

    Article  CAS  PubMed  Google Scholar 

  22. Benabid AL, Pollak P, Gervason C, Hoffmann D, Gao DM, Hommel M, et al. Long-term `suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet. 1991;337(8738):403–6.

    Article  CAS  PubMed  Google Scholar 

  23. Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol. 1987;50(1–6):344–6.

    CAS  PubMed  Google Scholar 

  24. Bittar RG, Hyam J, Nandi D, Wang S, Liu X, Joint C, et al. Thalamotomy versus thalamic stimulation for multiple sclerosis tremor. J Clin Neurosci. 2005;12(6):638–42.

    Article  PubMed  Google Scholar 

  25. Pahwa R, Lyons KE, Wilkinson SB, Troster AI, Overman J, Kieltyka J, et al. Comparison of thalamotomy to deep brain stimulation of the thalamus in essential tremor. Mov Disord. 2001;16(1):140–3.

    Article  CAS  PubMed  Google Scholar 

  26. Schuurman PR, Bosch DA, Bossuyt PM, Bonsel GJ, van Someren EJ, de Bie RM, et al. A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor. N Engl J Med. 2000;342(7):461–8.

    Article  CAS  PubMed  Google Scholar 

  27. Ghika J, Villemure JG, Fankhauser H, Favre J, Assal G, Ghika-Schmid F. Efficiency and safety of bilateral contemporaneous pallidal stimulation (deep brain stimulation) in levodopa-responsive patients with Parkinson’s disease with severe motor fluctuations: a 2-year follow-up review. J Neurosurg. 1998;89(5):713–8.

    Article  CAS  PubMed  Google Scholar 

  28. Siegfried J, Lippitz B. Bilateral chronic electrostimulation of ventroposterolateral pallidum: a new therapeutic approach for alleviating all parkinsonian symptoms. Neurosurgery. 1994;35(6):1126–9; discussion 9–30.

    Google Scholar 

  29. Aziz TZ, Peggs D, Sambrook MA, Crossman AR. Lesion of the subthalamic nucleus for the alleviation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the primate. Mov Disord. 1991;6(4):288–92.

    Article  CAS  PubMed  Google Scholar 

  30. Benazzouz A, Gross C, Feger J, Boraud T, Bioulac B. Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys. Eur J Neurosci. 1993;5(4):382–9.

    Article  CAS  PubMed  Google Scholar 

  31. Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schafer H, Botzel K, et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2006;355(9):896–908.

    Article  CAS  PubMed  Google Scholar 

  32. Follett KA, Weaver FM, Stern M, Hur K, Harris CL, Luo P, et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2010;362(22):2077–91.

    Article  CAS  PubMed  Google Scholar 

  33. Miocinovic S, Somayajula S, Chitnis S, Vitek JL. History, applications, and mechanisms of deep brain stimulation. JAMA Neurol. 2013;70(2):163–71.

    Article  PubMed  Google Scholar 

  34. Morita H, Hass CJ, Moro E, Sudhyadhom A, Kumar R, Okun MS. Pedunculopontine nucleus stimulation: where are we now and what needs to be done to move the field forward? Front Neurol. 2014;5:243.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Benazzouz A, Gao DM, Ni ZG, Piallat B, Bouali-Benazzouz R, Benabid AL. Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat. Neuroscience. 2000;99(2):289–95.

    Article  CAS  PubMed  Google Scholar 

  36. Boraud T, Bezard E, Bioulac B, Gross C. High frequency stimulation of the internal Globus Pallidus (GPi) simultaneously improves parkinsonian symptoms and reduces the firing frequency of GPi neurons in the MPTP-treated monkey. Neurosci Lett. 1996;215(1):17–20.

    Article  CAS  PubMed  Google Scholar 

  37. Birdno MJ, Tang W, Dostrovsky JO, Hutchison WD, Grill WM. Response of human thalamic neurons to high-frequency stimulation. PLoS One. 2014;9(5):e96026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Dostrovsky JO, Levy R, Wu JP, Hutchison WD, Tasker RR, Lozano AM. Microstimulation-induced inhibition of neuronal firing in human globus pallidus. J Neurophysiol. 2000;84(1):570–4.

    CAS  PubMed  Google Scholar 

  39. Filali M, Hutchison WD, Palter VN, Lozano AM, Dostrovsky JO. Stimulation-induced inhibition of neuronal firing in human subthalamic nucleus. Exp Brain Res. 2004;156(3):274–81.

    Article  PubMed  Google Scholar 

  40. Welter ML, Houeto JL, Bonnet AM, Bejjani PB, Mesnage V, Dormont D, et al. Effects of high-frequency stimulation on subthalamic neuronal activity in parkinsonian patients. Arch Neurol. 2004;61(1):89–96.

    Article  PubMed  Google Scholar 

  41. Beurrier C, Bioulac B, Audin J, Hammond C. High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J Neurophysiol. 2001;85(4):1351–6.

    CAS  PubMed  Google Scholar 

  42. McIntyre CC, Grill WM, Sherman DL, Thakor NV. Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J Neurophysiol. 2004;91(4):1457–69.

    Article  PubMed  Google Scholar 

  43. Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek JL. Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci. 2003;23(5):1916–23.

    CAS  PubMed  Google Scholar 

  44. Anderson ME, Postupna N, Ruffo M. Effects of high-frequency stimulation in the internal globus pallidus on the activity of thalamic neurons in the awake monkey. J Neurophysiol. 2003;89(2):1150–60.

    Article  PubMed  Google Scholar 

  45. Montgomery Jr EB. Effects of GPi stimulation on human thalamic neuronal activity. Clin Neurophysiol. 2006;117(12):2691–702.

    Article  PubMed  Google Scholar 

  46. Vitek JL, Zhang J, Hashimoto T, Russo GS, Baker KB. External pallidal stimulation improves parkinsonian motor signs and modulates neuronal activity throughout the basal ganglia thalamic network. Exp Neurol. 2012;233(1):581–6.

    Article  PubMed  Google Scholar 

  47. Hershey T, Revilla FJ, Wernle AR, McGee-Minnich L, Antenor JV, Videen TO, et al. Cortical and subcortical blood flow effects of subthalamic nucleus stimulation in PD. Neurology. 2003;61(6):816–21.

    Article  CAS  PubMed  Google Scholar 

  48. Perlmutter JS, Mink JW, Bastian AJ, Zackowski K, Hershey T, Miyawaki E, et al. Blood flow responses to deep brain stimulation of thalamus. Neurology. 2002;58(9):1388–94.

    Article  CAS  PubMed  Google Scholar 

  49. Jech R, Urgosik D, Tintera J, Nebuzelsky A, Krasensky J, Liscak R, et al. Functional magnetic resonance imaging during deep brain stimulation: a pilot study in four patients with Parkinson’s disease. Mov Disord. 2001;16(6):1126–32.

    Article  CAS  PubMed  Google Scholar 

  50. Boulet S, Lacombe E, Carcenac C, Feuerstein C, Sgambato-Faure V, Poupard A, et al. Subthalamic stimulation-induced forelimb dyskinesias are linked to an increase in glutamate levels in the substantia nigra pars reticulata. J Neurosci. 2006;26(42):10768–76.

    Article  CAS  PubMed  Google Scholar 

  51. Johnson MD, McIntyre CC. Quantifying the neural elements activated and inhibited by globus pallidus deep brain stimulation. J Neurophysiol. 2008;100(5):2549–63.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Li S, Arbuthnott GW, Jutras MJ, Goldberg JA, Jaeger D. Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation. J Neurophysiol. 2007;98(6):3525–37.

    Article  CAS  PubMed  Google Scholar 

  53. Walker HC, Huang H, Gonzalez CL, Bryant JE, Killen J, Cutter GR, et al. Short latency activation of cortex during clinically effective subthalamic deep brain stimulation for Parkinson’s disease. Mov Disord. 2012;27(7):864–73.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Walker HC, Huang H, Gonzalez CL, Bryant JE, Killen J, Knowlton RC, et al. Short latency activation of cortex by clinically effective thalamic brain stimulation for tremor. Mov Disord. 2012;27(11):1404–12.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kuriakose R, Saha U, Castillo G, Udupa K, Ni Z, Gunraj C, et al. The nature and time course of cortical activation following subthalamic stimulation in Parkinson’s disease. Cereb Cortex. 2010;20(8):1926–36.

    Article  PubMed  Google Scholar 

  56. Santaniello S, McCarthy MM, Montgomery Jr EB, Gale JT, Kopell N, Sarma SV. Therapeutic mechanisms of high-frequency stimulation in Parkinson’s disease and neural restoration via loop-based reinforcement. Proc Natl Acad Sci U S A. 2015;112(6):E586–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K. Optical deconstruction of parkinsonian neural circuitry. Science. 2009;324(5925):354–9.

    Article  CAS  PubMed  Google Scholar 

  58. Smith Y, Wichmann T. The cortico-pallidal projection: an additional route for cortical regulation of the basal ganglia circuitry. Mov Disord. 2015;30(3):293–5.

    Article  PubMed  Google Scholar 

  59. McCairn KW, Turner RS. Pallidal Stimulation Suppresses Pathological Dysrhythmia in the Parkinsonian Motor Cortex. J Neurophysiol. 2015;113(7):2537–48. doi:10.1152/jn.00701.2014.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Johnson MD, Vitek JL, McIntyre CC. Pallidal stimulation that improves parkinsonian motor symptoms also modulates neuronal firing patterns in primary motor cortex in the MPTP-treated monkey. Exp Neurol. 2009;219(1):359–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989;12(10):366–75.

    Article  CAS  PubMed  Google Scholar 

  62. DeLong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 1990;13(7):281–5.

    Article  CAS  PubMed  Google Scholar 

  63. Ellens DJ, Leventhal DK. Review: electrophysiology of basal ganglia and cortex in models of Parkinson disease. J Parkinsons Dis. 2013;3(3):241–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hahn PJ, Russo GS, Hashimoto T, Miocinovic S, Xu W, McIntyre CC, et al. Pallidal burst activity during therapeutic deep brain stimulation. Exp Neurol. 2008;211(1):243–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dorval AD, Russo GS, Hashimoto T, Xu W, Grill WM, Vitek JL. Deep brain stimulation reduces neuronal entropy in the MPTP-primate model of Parkinson’s disease. J Neurophysiol. 2008;100(5):2807–18.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Cleary DR, Raslan AM, Rubin JE, Bahgat D, Viswanathan A, Heinricher MM, et al. Deep brain stimulation entrains local neuronal firing in human globus pallidus internus. J Neurophysiol. 2013;109(4):978–87.

    Article  PubMed  Google Scholar 

  67. McCairn KW, Turner RS. Deep brain stimulation of the globus pallidus internus in the parkinsonian primate: local entrainment and suppression of low-frequency oscillations. J Neurophysiol. 2009;101(4):1941–60.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Xu W, Russo GS, Hashimoto T, Zhang J, Vitek JL. Subthalamic nucleus stimulation modulates thalamic neuronal activity. J Neurosci. 2008;28(46):11916–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pasquereau B, Turner RS. Primary motor cortex of the parkinsonian monkey: differential effects on the spontaneous activity of pyramidal tract-type neurons. Cereb Cortex. 2011;21(6):1362–78.

    Article  PubMed  Google Scholar 

  70. McConnell GC, So RQ, Hilliard JD, Lopomo P, Grill WM. Effective deep brain stimulation suppresses low-frequency network oscillations in the basal ganglia by regularizing neural firing patterns. J Neurosci. 2012;32(45):15657–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Meissner W, Leblois A, Hansel D, Bioulac B, Gross CE, Benazzouz A, et al. Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations. Brain. 2005;128(Pt 10):2372–82.

    Article  PubMed  Google Scholar 

  72. Wichmann T, Bergman H, DeLong MR. The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism. J Neurophysiol. 1994;72(2):521–30.

    CAS  PubMed  Google Scholar 

  73. Lenz FA, Tasker RR, Kwan HC, Schnider S, Kwong R, Murayama Y, et al. Single unit analysis of the human ventral thalamic nuclear group: correlation of thalamic "tremor cells" with the 3-6 Hz component of parkinsonian tremor. J Neurosci. 1988;8(3):754–64.

    CAS  PubMed  Google Scholar 

  74. Guehl D, Pessiglione M, Francois C, Yelnik J, Hirsch EC, Feger J, et al. Tremor-related activity of neurons in the ‘motor’ thalamus: changes in firing rate and pattern in the MPTP vervet model of parkinsonism. Eur J Neurosci. 2003;17(11):2388–400.

    Article  CAS  PubMed  Google Scholar 

  75. Moran A, Stein E, Tischler H, Bar-Gad I. Decoupling neuronal oscillations during subthalamic nucleus stimulation in the parkinsonian primate. Neurobiol Dis. 2012;45(1):583–90.

    Article  CAS  PubMed  Google Scholar 

  76. Ray NJ, Jenkinson N, Wang S, Holland P, Brittain JS, Joint C, et al. Local field potential beta activity in the subthalamic nucleus of patients with Parkinson’s disease is associated with improvements in bradykinesia after dopamine and deep brain stimulation. Exp Neurol. 2008;213(1):108–13.

    Article  CAS  PubMed  Google Scholar 

  77. Bar-Gad I, Heimer G, Ritov Y, Bergman H. Functional correlations between neighboring neurons in the primate globus pallidus are weak or nonexistent. J Neurosci. 2003;23(10):4012–6.

    CAS  PubMed  Google Scholar 

  78. Rivlin-Etzion M, Elias S, Heimer G, Bergman H. Computational physiology of the basal ganglia in Parkinson’s disease. Prog Brain Res. 2010;183:259–73.

    Article  CAS  PubMed  Google Scholar 

  79. de Hemptinne C, Ryapolova-Webb ES, Air EL, Garcia PA, Miller KJ, Ojemann JG, et al. Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. Proc Natl Acad Sci U S A. 2013;110(12):4780–5.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Brittain JS, Brown P. Oscillations and the basal ganglia: motor control and beyond. Neuroimage. 2014;85(Pt 2):637–47.

    Article  PubMed  Google Scholar 

  81. Leventhal DK, Gage GJ, Schmidt R, Pettibone JR, Case AC, Berke JD. Basal ganglia beta oscillations accompany cue utilization. Neuron. 2012;73(3):523–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Obeso JA, Jahanshahi M, Alvarez L, Macias R, Pedroso I, Wilkinson L, et al. What can man do without basal ganglia motor output? The effect of combined unilateral subthalamotomy and pallidotomy in a patient with Parkinson’s disease. Exp Neurol. 2009;220(2):283–92.

    Article  CAS  PubMed  Google Scholar 

  83. Goldberg JH, Farries MA, Fee MS. Basal ganglia output to the thalamus: still a paradox. Trends Neurosci. 2013;36(12):695–705.

    Article  CAS  PubMed  Google Scholar 

  84. Seeger-Armbruster S, Bosch-Bouju C, Little ST, Smither RA, Hughes SM, Hyland BI, et al. Patterned, but not tonic, optogenetic stimulation in motor thalamus improves reaching in acute drug-induced Parkinsonian rats. J Neurosci. 2015;35(3):1211–6.

    Article  PubMed  CAS  Google Scholar 

  85. Rubin JE, McIntyre CC, Turner RS, Wichmann T. Basal ganglia activity patterns in parkinsonism and computational modeling of their downstream effects. Eur J Neurosci. 2012;36(2):2213–28.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Rosin B, Slovik M, Mitelman R, Rivlin-Etzion M, Haber SN, Israel Z, et al. Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron. 2011;72(2):370–84.

    Article  CAS  PubMed  Google Scholar 

  87. Hallett M. Tremor: pathophysiology. Parkinsonism Relat Disord. 2014;20(Suppl 1):S118–22.

    Article  PubMed  Google Scholar 

  88. Helmich RC, Hallett M, Deuschl G, Toni I, Bloem BR. Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits? Brain. 2012;135(Pt 11):3206–26.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bostan AC, Dum RP, Strick PL. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci. 2013;17(5):241–54.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Olanow CW. Can we achieve neuroprotection with currently available anti-parkinsonian interventions? Neurology. 2009;72(7 Suppl):S59–64.

    Article  CAS  PubMed  Google Scholar 

  91. Schuepbach WM, Rau J, Knudsen K, Volkmann J, Krack P, Timmermann L, et al. Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med. 2013;368(7):610–22.

    Article  CAS  PubMed  Google Scholar 

  92. Charles PD, Dolhun RM, Gill CE, Davis TL, Bliton MJ, Tramontana MG, et al. Deep brain stimulation in early Parkinson’s disease: enrollment experience from a pilot trial. Parkinsonism Relat Disord. 2012;18(3):268–73.

    Article  CAS  PubMed  Google Scholar 

  93. Charles D, Konrad PE, Neimat JS, Molinari AL, Tramontana MG, Finder SG, et al. Subthalamic nucleus deep brain stimulation in early stage Parkinson’s disease. Parkinsonism Relat Disord. 2014;20(7):731–7.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Deuschl G, Bain P. Deep brain stimulation for tremor: patient selection and evaluation. Mov Disord. 2002;17(Suppl 3):S102–11.

    Article  PubMed  Google Scholar 

  95. Kumar R, Lozano AM, Sime E, Lang AE. Long-term follow-up of thalamic deep brain stimulation for essential and parkinsonian tremor. Neurology. 2003;61(11):1601–4.

    Article  PubMed  Google Scholar 

  96. Bandini F, Primavera A, Pizzorno M, Cocito L. Using STN DBS and medication reduction as a strategy to treat pathological gambling in Parkinson’s disease. Parkinsonism Relat Disord. 2007;13(6):369–71.

    Article  PubMed  Google Scholar 

  97. Molina JA, Sainz-Artiga MJ, Fraile A, Jimenez-Jimenez FJ, Villanueva C, Orti-Pareja M, et al. Pathologic gambling in Parkinson’s disease: a behavioral manifestation of pharmacologic treatment? Mov Disord. 2000;15(5):869–72.

    Article  CAS  PubMed  Google Scholar 

  98. Morgante L, Morgante F, Moro E, Epifanio A, Girlanda P, Ragonese P, et al. How many parkinsonian patients are suitable candidates for deep brain stimulation of subthalamic nucleus? Results of a questionnaire. Parkinsonism Relat Disord. 2007;13(8):528–31.

    Article  PubMed  Google Scholar 

  99. Pahwa R, Factor SA, Lyons KE, Ondo WG, Gronseth G, Bronte-Stewart H, et al. Practice parameter: treatment of Parkinson disease with motor fluctuations and dyskinesia (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2006;66(7):983–95.

    Article  CAS  PubMed  Google Scholar 

  100. Abboud H, Mehanna R, Machado A, Ahmed A, Gostkowski M, Cooper S, et al. Comprehensive, multidisciplinary deep brain stimulation screening for Parkinson patients: no room for “short cuts”. Mov Disord Clin Pract (Hoboken). 2014;1(4):336–41.

    Article  Google Scholar 

  101. Shih LC, Tarsy D. Deep brain stimulation for the treatment of atypical parkinsonism. Mov Disord. 2007;22(15):2149–55.

    Article  PubMed  Google Scholar 

  102. Chou KL, Forman MS, Trojanowski JQ, Hurtig HI, Baltuch GH. Subthalamic nucleus deep brain stimulation in a patient with levodopa-responsive multiple system atrophy. Case report. J Neurosurg. 2004;100(3):553–6.

    Article  PubMed  Google Scholar 

  103. Okun MS, Tagliati M, Pourfar M, Fernandez HH, Rodriguez RL, Alterman RL, et al. Management of referred deep brain stimulation failures: a retrospective analysis from 2 movement disorders centers. Arch Neurol. 2005;62(8):1250–5.

    Article  PubMed  Google Scholar 

  104. Visser-Vandewalle V, Temel Y, Colle H, van der Linden C. Bilateral high-frequency stimulation of the subthalamic nucleus in patients with multiple system atrophy–parkinsonism. Report of four cases. J Neurosurg. 2003;98(4):882–7.

    Article  PubMed  Google Scholar 

  105. Kleiner-Fisman G, Herzog J, Fisman DN, Tamma F, Lyons KE, Pahwa R, et al. Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. Mov Disord. 2006;21(Suppl 14):S290–304.

    Article  PubMed  Google Scholar 

  106. Welter ML, Houeto JL, Tezenas du Montcel S, Mesnage V, Bonnet AM, Pillon B, et al. Clinical predictive factors of subthalamic stimulation in Parkinson’s disease. Brain. 2002;125(Pt 3):575–83.

    Article  CAS  PubMed  Google Scholar 

  107. Castrioto A, Lozano AM, Poon YY, Lang AE, Fallis M, Moro E. Ten-year outcome of subthalamic stimulation in Parkinson disease: a blinded evaluation. Arch Neurol. 2011;68(12):1550–6.

    Article  PubMed  Google Scholar 

  108. Kleiner-Fisman G, Fisman DN, Sime E, Saint-Cyr JA, Lozano AM, Lang AE. Long-term follow up of bilateral deep brain stimulation of the subthalamic nucleus in patients with advanced Parkinson disease. J Neurosurg. 2003;99(3):489–95.

    Article  PubMed  Google Scholar 

  109. Krack P, Batir A, Van Blercom N, Chabardes S, Fraix V, Ardouin C, et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med. 2003;349(20):1925–34.

    Article  CAS  PubMed  Google Scholar 

  110. Lubik S, Fogel W, Tronnier V, Krause M, Konig J, Jost WH. Gait analysis in patients with advanced Parkinson disease: different or additive effects on gait induced by levodopa and chronic STN stimulation. J Neural Transm. 2006;113(2):163–73.

    Article  CAS  PubMed  Google Scholar 

  111. Schupbach WM, Chastan N, Welter ML, Houeto JL, Mesnage V, Bonnet AM, et al. Stimulation of the subthalamic nucleus in Parkinson’s disease: a 5 year follow up. J Neurol Neurosurg Psychiatry. 2005;76(12):1640–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chou KL, Taylor JL, Patil PG. The MDS-UPDRS tracks motor and non-motor improvement due to subthalamic nucleus deep brain stimulation in Parkinson disease. Parkinsonism Relat Disord. 2013;19(11):966–9.

    Article  PubMed  Google Scholar 

  113. Yu H, Neimat JS. The treatment of movement disorders by deep brain stimulation. Neurotherapeutics. 2008;5(1):26–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bronstein JM, Tagliati M, Alterman RL, Lozano AM, Volkmann J, Stefani A, et al. Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch Neurol. 2011;68(2):165.

    Article  PubMed  Google Scholar 

  115. Lang AE, Houeto JL, Krack P, Kubu C, Lyons KE, Moro E, et al. Deep brain stimulation: preoperative issues. Mov Disord. 2006;21(Suppl 14):S171–96.

    Article  PubMed  Google Scholar 

  116. Hariz MI, Johansson F, Shamsgovara P, Johansson E, Hariz GM, Fagerlund M. Bilateral subthalamic nucleus stimulation in a parkinsonian patient with preoperative deficits in speech and cognition: persistent improvement in mobility but increased dependency: a case study. Mov Disord. 2000;15(1):136–9.

    Article  CAS  PubMed  Google Scholar 

  117. Morrison CE, Borod JC, Perrine K, Beric A, Brin MF, Rezai A, et al. Neuropsychological functioning following bilateral subthalamic nucleus stimulation in Parkinson’s disease. Arch Clin Neuropsychol. 2004;19(2):165–81.

    Article  CAS  PubMed  Google Scholar 

  118. Saint-Cyr JA, Trepanier LL, Kumar R, Lozano AM, Lang AE. Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson’s disease. Brain. 2000;123(Pt 10):2091–108.

    Article  PubMed  Google Scholar 

  119. Houeto JL, Mesnage V, Mallet L, Pillon B, Gargiulo M, du Moncel ST, et al. Behavioural disorders, Parkinson’s disease and subthalamic stimulation. J Neurol Neurosurg Psychiatry. 2002;72(6):701–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Troster AI, Fields JA, Wilkinson S, Pahwa R, Koller WC, Lyons KE. Effect of motor improvement on quality of life following subthalamic stimulation is mediated by changes in depressive symptomatology. Stereotact Funct Neurosurg. 2003;80(1–4):43–7.

    PubMed  Google Scholar 

  121. Appleby BS, Duggan PS, Regenberg A, Rabins PV. Psychiatric and neuropsychiatric adverse events associated with deep brain stimulation: a meta-analysis of ten years’ experience. Mov Disord. 2007;22(12):1722–8.

    Article  PubMed  Google Scholar 

  122. Soulas T, Gurruchaga JM, Palfi S, Cesaro P, Nguyen JP, Fenelon G. Attempted and completed suicides after subthalamic nucleus stimulation for Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2008;79(8):952–4.

    Article  CAS  PubMed  Google Scholar 

  123. Voon V, Krack P, Lang AE, Lozano AM, Dujardin K, Schupbach M, et al. A multicentre study on suicide outcomes following subthalamic stimulation for Parkinson’s disease. Brain. 2008;131(Pt 10):2720–8.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Saint-Cyr JA, Albanese A. STN DBS in PD: selection criteria for surgery should include cognitive and psychiatric factors. Neurology. 2006;66(12):1799–800.

    Article  PubMed  Google Scholar 

  125. Charles PD, Van Blercom N, Krack P, Lee SL, Xie J, Besson G, et al. Predictors of effective bilateral subthalamic nucleus stimulation for PD. Neurology. 2002;59(6):932–4.

    Article  CAS  PubMed  Google Scholar 

  126. DeLong MR, Huang KT, Gallis J, Lokhnygina Y, Parente B, Hickey P, et al. Effect of advancing age on outcomes of deep brain stimulation for Parkinson disease. JAMA Neurol. 2014;71(10):1290–5.

    Article  PubMed  Google Scholar 

  127. Weaver FM, Follett K, Stern M, Hur K, Harris C, Marks Jr WJ, et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA. 2009;301(1):63–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Weaver FM, Follett KA, Stern M, Luo P, Harris CL, Hur K, et al. Randomized trial of deep brain stimulation for Parkinson disease: thirty-six-month outcomes. Neurology. 2012;79(1):55–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Pahwa R, Lyons KE, Wilkinson SB, Simpson Jr RK, Ondo WG, Tarsy D, et al. Long-term evaluation of deep brain stimulation of the thalamus. J Neurosurg. 2006;104(4):506–12.

    Article  PubMed  Google Scholar 

  130. Ferraye MU, Debu B, Fraix V, Goetz L, Ardouin C, Yelnik J, et al. Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain. 2010;133(Pt 1):205–14.

    Article  CAS  PubMed  Google Scholar 

  131. Ostrem JL, Christine CW, Glass GA, Schrock LE, Starr PA. Pedunculopontine nucleus deep brain stimulation in a patient with primary progressive freezing gait disorder. Stereotact Funct Neurosurg. 2010;88(1):51–5.

    Article  PubMed  Google Scholar 

  132. Thevathasan W, Cole MH, Graepel CL, Hyam JA, Jenkinson N, Brittain JS, et al. A spatiotemporal analysis of gait freezing and the impact of pedunculopontine nucleus stimulation. Brain. 2012;135(Pt 5):1446–54.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Okun MS, Gallo BV, Mandybur G, Jagid J, Foote KD, Revilla FJ, et al. Subthalamic deep brain stimulation with a constant-current device in Parkinson’s disease: an open-label randomised controlled trial. Lancet Neurol. 2012;11(2):140–9.

    Article  PubMed  Google Scholar 

  134. Deep Brain Stimulation for Parkinson’s Disease Study Group. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med. 2001;345(13):956–63.

    Article  Google Scholar 

  135. Krause M, Fogel W, Heck A, Hacke W, Bonsanto M, Trenkwalder C, et al. Deep brain stimulation for the treatment of Parkinson’s disease: subthalamic nucleus versus globus pallidus internus. J Neurol Neurosurg Psychiatry. 2001;70(4):464–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Volkmann J, Allert N, Voges J, Weiss PH, Freund HJ, Sturm V. Safety and efficacy of pallidal or subthalamic nucleus stimulation in advanced PD. Neurology. 2001;56(4):548–51.

    Article  CAS  PubMed  Google Scholar 

  137. Volkmann J, Allert N, Voges J, Sturm V, Schnitzler A, Freund HJ. Long-term results of bilateral pallidal stimulation in Parkinson’s disease. Ann Neurol. 2004;55(6):871–5.

    Article  PubMed  Google Scholar 

  138. Burchiel KJ, Anderson VC, Favre J, Hammerstad JP. Comparison of pallidal and subthalamic nucleus deep brain stimulation for advanced Parkinson’s disease: results of a randomized, blinded pilot study. Neurosurgery. 1999;45(6):1375–82; discussion 82–4.

    Google Scholar 

  139. Odekerken VJ, van Laar T, Staal MJ, Mosch A, Hoffmann CF, Nijssen PC, et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol. 2013;12(1):37–44.

    Article  PubMed  Google Scholar 

  140. Bang Henriksen M, Johnsen EL, Sunde N, Vase A, Gjelstrup MC, Ostergaard K. Surviving 10 years with deep brain stimulation for Parkinson’s disease – a follow-up of 79 patients. Eur J Neurol. 2016;23(1):53–61.

    Google Scholar 

  141. Janssen ML, Duits AA, Tourai AM, Ackermans L, Leentjes AF, van Kranen-Mastenbroek V, et al. Subthalamic nucleus high-frequency stimulation for advanced Parkinson’s disease: motor and neuropsychological outcome after 10 years. Stereotact Funct Neurosurg. 2014;92(6):381–7.

    Article  PubMed  Google Scholar 

  142. Rodriguez-Oroz MC, Obeso JA, Lang AE, Houeto JL, Pollak P, Rehncrona S, et al. Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain. 2005;128(Pt 10):2240–9.

    Article  CAS  PubMed  Google Scholar 

  143. Moro E, Lozano AM, Pollak P, Agid Y, Rehncrona S, Volkmann J, et al. Long-term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson’s disease. Mov Disord. 2010;25(5):578–86.

    Article  PubMed  Google Scholar 

  144. Lyons KE, Pahwa R. Long-term benefits in quality of life provided by bilateral subthalamic stimulation in patients with Parkinson disease. J Neurosurg. 2005;103(2):252–5.

    Article  PubMed  Google Scholar 

  145. Siderowf A, Jaggi JL, Xie SX, Loveland-Jones C, Leng L, Hurtig H, et al. Long-term effects of bilateral subthalamic nucleus stimulation on health-related quality of life in advanced Parkinson’s disease. Mov Disord. 2006;21(6):746–53.

    Article  PubMed  Google Scholar 

  146. Volkmann J, Albanese A, Kulisevsky J, Tornqvist AL, Houeto JL, Pidoux B, et al. Long-term effects of pallidal or subthalamic deep brain stimulation on quality of life in Parkinson’s disease. Mov Disord. 2009;24(8):1154–61.

    Article  PubMed  Google Scholar 

  147. Lagrange E, Krack P, Moro E, Ardouin C, Van Blercom N, Chabardes S, et al. Bilateral subthalamic nucleus stimulation improves health-related quality of life in PD. Neurology. 2002;59(12):1976–8.

    Article  CAS  PubMed  Google Scholar 

  148. Moro E, Poon YY, Lozano AM, Saint-Cyr JA, Lang AE. Subthalamic nucleus stimulation: improvements in outcome with reprogramming. Arch Neurol. 2006;63(9):1266–72.

    PubMed  Google Scholar 

  149. Limousin P, Speelman JD, Gielen F, Janssens M. Multicentre European study of thalamic stimulation in parkinsonian and essential tremor. J Neurol Neurosurg Psychiatry. 1999;66(3):289–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hariz MI, Krack P, Alesch F, Augustinsson LE, Bosch A, Ekberg R, et al. Multicentre European study of thalamic stimulation for parkinsonian tremor: a 6 year follow-up. J Neurol Neurosurg Psychiatry. 2008;79(6):694–9.

    Article  CAS  PubMed  Google Scholar 

  151. Lyons KE, Koller WC, Wilkinson SB, Pahwa R. Long term safety and efficacy of unilateral deep brain stimulation of the thalamus for parkinsonian tremor. J Neurol Neurosurg Psychiatry. 2001;71(5):682–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Pahapill PA, Lozano AM. The pedunculopontine nucleus and Parkinson’s disease. Brain. 2000;123(Pt 9):1767–83.

    Article  PubMed  Google Scholar 

  153. Plaha P, Gill SS. Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. Neuroreport. 2005;16(17):1883–7.

    Article  PubMed  Google Scholar 

  154. Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D, et al. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain. 2007;130(Pt 6):1596–607.

    Article  PubMed  Google Scholar 

  155. Khan S, Javed S, Mooney L, White P, Plaha P, Whone A, et al. Clinical outcomes from bilateral versus unilateral stimulation of the pedunculopontine nucleus with and without concomitant caudal zona incerta region stimulation in Parkinson’s disease. Br J Neurosurg. 2012;26(5):722–5.

    Article  PubMed  Google Scholar 

  156. Alessandro S, Ceravolo R, Brusa L, Pierantozzi M, Costa A, Galati S, et al. Non-motor functions in parkinsonian patients implanted in the pedunculopontine nucleus: focus on sleep and cognitive domains. J Neurol Sci. 2010;289(1–2):44–8.

    Article  PubMed  Google Scholar 

  157. Lim AS, Moro E, Lozano AM, Hamani C, Dostrovsky JO, Hutchison WD, et al. Selective enhancement of rapid eye movement sleep by deep brain stimulation of the human pons. Ann Neurol. 2009;66(1):110–4.

    Article  PubMed  Google Scholar 

  158. Videnovic A, Metman LV. Deep brain stimulation for Parkinson’s disease: prevalence of adverse events and need for standardized reporting. Mov Disord. 2008;23(3):343–9.

    Article  PubMed  Google Scholar 

  159. Patel DM, Walker HC, Brooks R, Omar N, Ditty B, Guthrie BL. Adverse events associated with deep brain stimulation for movement disorders: analysis of 510 consecutive cases. Neurosurgery. 2015;11(Suppl 2):190–9.

    PubMed  Google Scholar 

  160. Binder DK, Rau GM, Starr PA. Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders. Neurosurgery. 2005;56(4):722–32; discussion −32.

    Google Scholar 

  161. Bhatia S, Oh M, Whiting T, Quigley M, Whiting D. Surgical complications of deep brain stimulation. A longitudinal single surgeon, single institution study. Stereotact Funct Neurosurg. 2008;86(6):367–72.

    Article  PubMed  Google Scholar 

  162. Kenney C, Simpson R, Hunter C, Ondo W, Almaguer M, Davidson A, et al. Short-term and long-term safety of deep brain stimulation in the treatment of movement disorders. J Neurosurg. 2007;106(4):621–5.

    Article  PubMed  Google Scholar 

  163. Ben-Haim S, Asaad WF, Gale JT, Eskandar EN. Risk factors for hemorrhage during microelectrode-guided deep brain stimulation and the introduction of an improved microelectrode design. Neurosurgery. 2009;64(4):754–62; discussion 62–3.

    Google Scholar 

  164. Zrinzo L, Foltynie T, Limousin P, Hariz MI. Reducing hemorrhagic complications in functional neurosurgery: a large case series and systematic literature review. J Neurosurg. 2012;116(1):84–94.

    Article  PubMed  Google Scholar 

  165. Baizabal Carvallo JF, Mostile G, Almaguer M, Davidson A, Simpson R, Jankovic J. Deep brain stimulation hardware complications in patients with movement disorders: risk factors and clinical correlations. Stereotact Funct Neurosurg. 2012;90(5):300–6.

    Article  PubMed  Google Scholar 

  166. Nutt JG, Anderson VC, Peacock JH, Hammerstad JP, Burchiel KJ. DBS and diathermy interaction induces severe CNS damage. Neurology. 2001;56(10):1384–6.

    Article  CAS  PubMed  Google Scholar 

  167. Henderson JM, Tkach J, Phillips M, Baker K, Shellock FG, Rezai AR. Permanent neurological deficit related to magnetic resonance imaging in a patient with implanted deep brain stimulation electrodes for Parkinson’s disease: case report. Neurosurgery. 2005;57(5):E1063; discussion E.

    Google Scholar 

  168. Tagliati M, Jankovic J, Pagan F, Susatia F, Isaias IU, Okun MS. Safety of MRI in patients with implanted deep brain stimulation devices. Neuroimage. 2009;47(Suppl 2):T53–7.

    Article  PubMed  Google Scholar 

  169. Zrinzo L, Yoshida F, Hariz MI, Thornton J, Foltynie T, Yousry TA, et al. Clinical safety of brain magnetic resonance imaging with implanted deep brain stimulation hardware: large case series and review of the literature. World Neurosurg. 2011;76(1–2):164–72; discussion 69–73.

    Google Scholar 

  170. Anderson WS, Lenz FA. Surgery insight: deep brain stimulation for movement disorders. Nat Clin Pract Neurol. 2006;2(6):310–20.

    Article  PubMed  Google Scholar 

  171. Obwegeser AA, Uitti RJ, Witte RJ, Lucas JA, Turk MF, Wharen RE, Jr. Quantitative and qualitative outcome measures after thalamic deep brain stimulation to treat disabling tremors. Neurosurgery. 2001;48(2):274–81; discussion 81–4.

    Google Scholar 

  172. Isaias IU, Alterman RL, Tagliati M. Deep brain stimulation for primary generalized dystonia: long-term outcomes. Arch Neurol. 2009;66(4):465–70.

    Article  PubMed  Google Scholar 

  173. Loher TJ, Capelle HH, Kaelin-Lang A, Weber S, Weigel R, Burgunder JM, et al. Deep brain stimulation for dystonia: outcome at long-term follow-up. J Neurol. 2008;255(6):881–4.

    Article  CAS  PubMed  Google Scholar 

  174. Hamani C, Richter E, Schwalb JM, Lozano AM. Bilateral subthalamic nucleus stimulation for Parkinson’s disease: a systematic review of the clinical literature. Neurosurgery. 2008;62(Suppl 2):863–74.

    PubMed  Google Scholar 

  175. Hariz MI. Complications of deep brain stimulation surgery. Mov Disord. 2002;17(Suppl 3):S162–6.

    Article  PubMed  Google Scholar 

  176. Pollak P, Krack P, Fraix V, Mendes A, Moro E, Chabardes S, et al. Intraoperative micro- and macrostimulation of the subthalamic nucleus in Parkinson’s disease. Mov Disord. 2002;17(Suppl 3):S155–61.

    Article  PubMed  Google Scholar 

  177. Umemura A, Jaggi JL, Hurtig HI, Siderowf AD, Colcher A, Stern MB, et al. Deep brain stimulation for movement disorders: morbidity and mortality in 109 patients. J Neurosurg. 2003;98(4):779–84.

    Article  PubMed  Google Scholar 

  178. Deuschl G, Herzog J, Kleiner-Fisman G, Kubu C, Lozano AM, Lyons KE, et al. Deep brain stimulation: postoperative issues. Mov Disord [Review]. 2006;21:S219–S37.

    Article  Google Scholar 

  179. Peron J, Grandjean D, Le Jeune F, Sauleau P, Haegelen C, Drapier D, et al. Recognition of emotional prosody is altered after subthalamic nucleus deep brain stimulation in Parkinson’s disease. Neuropsychologia. 2010;48(4):1053–62.

    Article  PubMed  Google Scholar 

  180. Sauleau P, Le Jeune F, Drapier S, Houvenaghel JF, Dondaine T, Haegelen C, et al. Weight gain following subthalamic nucleus deep brain stimulation: a PET study. Mov Disord. 2014;29(14):1781–7.

    Article  CAS  PubMed  Google Scholar 

  181. Tuite PJ, Maxwell RE, Ikramuddin S, Kotz CM, Billington CJ, Laseski MA, et al. Weight and body mass index in Parkinson’s disease patients after deep brain stimulation surgery. Parkinsonism Relat Disord. 2005;11(4):247–52.

    Article  PubMed  Google Scholar 

  182. Guehl D, Cuny E, Benazzouz A, Rougier A, Tison F, Machado S, et al. Side-effects of subthalamic stimulation in Parkinson’s disease: clinical evolution and predictive factors. Eur J Neurol. 2006;13(9):963–71.

    Article  CAS  PubMed  Google Scholar 

  183. Sauleau P, Leray E, Rouaud T, Drapier S, Drapier D, Blanchard S, et al. Comparison of weight gain and energy intake after subthalamic versus pallidal stimulation in Parkinson’s disease. Mov Disord. 2009;24(14):2149–55.

    Article  PubMed  Google Scholar 

  184. Doshi PK, Chhaya N, Bhatt MH. Depression leading to attempted suicide after bilateral subthalamic nucleus stimulation for Parkinson’s disease. Mov Disord. 2002;17(5):1084–5.

    Article  PubMed  Google Scholar 

  185. Rothlind JC, Cockshott RW, Starr PA, Marks Jr WJ. Neuropsychological performance following staged bilateral pallidal or subthalamic nucleus deep brain stimulation for Parkinson’s disease. J Int Neuropsychol Soc. 2007;13(1):68–79.

    Article  PubMed  Google Scholar 

  186. Temel Y, Kessels A, Tan S, Topdag A, Boon P, Visser-Vandewalle V. Behavioural changes after bilateral subthalamic stimulation in advanced Parkinson disease: a systematic review. Parkinsonism Relat Disord. 2006;12(5):265–72.

    Article  PubMed  Google Scholar 

  187. Okun MS, Fernandez HH, Wu SS, Kirsch-Darrow L, Bowers D, Bova F, et al. Cognition and mood in Parkinson’s disease in subthalamic nucleus versus globus pallidus interna deep brain stimulation: the COMPARE trial. Ann Neurol. 2009;65(5):586–95.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Zangaglia R, Pacchetti C, Pasotti C, Mancini F, Servello D, Sinforiani E, et al. Deep brain stimulation and cognitive functions in Parkinson’s disease: a three-year controlled study. Mov Disord. 2009;24(11):1621–8.

    Article  PubMed  Google Scholar 

  189. Funkiewiez A, Ardouin C, Caputo E, Krack P, Fraix V, Klinger H, et al. Long term effects of bilateral subthalamic nucleus stimulation on cognitive function, mood, and behaviour in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2004;75(6):834–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Porat O, Cohen OS, Schwartz R, Hassin-Baer S. Association of preoperative symptom profile with psychiatric symptoms following subthalamic nucleus stimulation in patients with Parkinson’s disease. J Neuropsychiatry Clin Neurosci. 2009 Fall;21(4):398–405.

    Article  PubMed  Google Scholar 

  191. Burchiel KJ, McCartney S, Lee A, Raslan AM. Accuracy of deep brain stimulation electrode placement using intraoperative computed tomography without microelectrode recording. J Neurosurg. 2013;119(2):301–6.

    Article  PubMed  Google Scholar 

  192. Martin AJ, Larson PS, Ostrem JL, Keith Sootsman W, Talke P, Weber OM, et al. Placement of deep brain stimulator electrodes using real-time high-field interventional magnetic resonance imaging. Magn Reson Med. 2005;54(5):1107–14.

    Article  PubMed  Google Scholar 

  193. Starr PA, Martin AJ, Larson PS. Implantation of deep brain stimulator electrodes using interventional MRI. Neurosurg Clin N Am. 2009;20(2):193–203.

    Article  PubMed  Google Scholar 

  194. Ostrem JL, Galifianakis NB, Markun LC, Grace JK, Martin AJ, Starr PA, et al. Clinical outcomes of PD patients having bilateral STN DBS using high-field interventional MR-imaging for lead placement. Clin Neurol Neurosurg. 2013;115(6):708–12.

    Article  PubMed  Google Scholar 

  195. Martin AJ, Larson PS, Ostrem JL, Starr PA. Interventional magnetic resonance guidance of deep brain stimulator implantation for Parkinson disease. Top Magn Reson Imaging. 2009;19(4):213–21.

    Article  PubMed  Google Scholar 

  196. Li G, Su H, Cole G, Shang W, Harrington K, Camilo A, et al. Robotic system for MRI-guided stereotactic neurosurgery. IEEE Trans Biomed Eng. 2015;62(4):1077–88.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Contarino MF, Bour LJ, Verhagen R, Lourens MA, de Bie RM, van den Munckhof P, et al. Directional steering: a novel approach to deep brain stimulation. Neurology. 2014;83(13):1163–9.

    Article  PubMed  Google Scholar 

  198. Pollo C, Kaelin-Lang A, Oertel MF, Stieglitz L, Taub E, Fuhr P, et al. Directional deep brain stimulation: an intraoperative double-blind pilot study. Brain. 2014;137(Pt 7):2015–26.

    Article  PubMed  Google Scholar 

  199. Hammond C, Bergman H, Brown P. Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci. 2007;30(7):357–64.

    Article  CAS  PubMed  Google Scholar 

  200. Hebb AO, Zhang JJ, Mahoor MH, Tsiokos C, Matlack C, Chizeck HJ, et al. Creating the feedback loop: closed-loop neurostimulation. Neurosurg Clin N Am. 2014;25(1):187–204.

    Article  PubMed  Google Scholar 

  201. Hohlefeld FU, Huchzermeyer C, Huebl J, Schneider GH, Nolte G, Brucke C, et al. Functional and effective connectivity in subthalamic local field potential recordings of patients with Parkinson’s disease. Neuroscience. 2013;250:320–32.

    Article  CAS  PubMed  Google Scholar 

  202. Yang AI, Vanegas N, Lungu C, Zaghloul KA. Beta-coupled high-frequency activity and beta-locked neuronal spiking in the subthalamic nucleus of Parkinson’s disease. J Neurosci. 2014;34(38):12816–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Eusebio A, Thevathasan W, Doyle Gaynor L, Pogosyan A, Bye E, Foltynie T, et al. Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients. J Neurol Neurosurg Psychiatry. 2011;82(5):569–73.

    Article  CAS  PubMed  Google Scholar 

  204. Little S, Pogosyan A, Neal S, Zavala B, Zrinzo L, Hariz M, et al. Adaptive deep brain stimulation in advanced Parkinson disease. Ann Neurol. 2013;74(3):449–57.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelvin L. Chou MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chou, K.L., Levin, E.L., Patil, P.G., Leventhal, D. (2017). Deep Brain Stimulation for Parkinson Disease. In: Majid, A. (eds) Electroceuticals. Springer, Cham. https://doi.org/10.1007/978-3-319-28612-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28612-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28610-5

  • Online ISBN: 978-3-319-28612-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics