Skip to main content
Log in

Hybrid classification model for eye state detection using electroencephalogram signals

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

The electroencephalography (EEG) signal is an essential source of Brain–Computer Interface (BCI) technology implementation. The BCI is nothing but a non-muscle communication medium among the external devices and the brain. The basic concept of BCI is to enable the interaction among the neurological ill patients to others with the help of brain signals. EEG signal classification is an essential requirement for various applications such as motor imagery classification, drug effects diagnosis, emotion classification, seizure prediction/detection, eye state prediction/detection, and so on. Thus, there is a need for an efficient classification model that can deal with the EEG datasets more adequately with better classification accuracy, which will further help in developing the automatic solution for the medical domain. In this paper, we have introduced a hybrid classification model for eye state detection using electroencephalogram (EEG) signals. This hybrid classification model has been evaluated with the other traditional machine learning models, eight classification models (Prepossessed + Hypertuned) and six state-of-the-art methods to assess its appropriateness and correctness. This proposed classification model establishes a machine learning-based hybrid model for the classification of eye state using EEG signals with greater exactness. It is also capable of solving the issue of outlier detection and removal to address the class imbalance problem, which will offer the solution toward building the robotic or smart machine-based solution for social well-being.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aarabi A, Grebe R, Wallois F (2007) A multistage knowledge-based system for EEG seizure detection in newborn infants. Clin Neurophysiol 118(12):2781–2797

    Article  PubMed  Google Scholar 

  • Abujelala M, Abellanoza C, Sharma A, Makedon F (2016) Brain-ee: brain enjoyment evaluation using commercial EEG headband. In: Proceedings of the 9th ACM international conference on pervasive technologies related to assistive environments, pp 1–5

  • Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H, Subha DP (2018a) Automated EEG-based screening of depression using deep convolutional neural network. Comput Methods Programs Biomed 161:103–113

    Article  PubMed  Google Scholar 

  • Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H (2018b) Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput Biol Med 100:270–278

    Article  PubMed  Google Scholar 

  • Ang KK, Guan C, Chua KSG, Ang BT, Kuah C, Wang C, Phua KS, Chin ZY, Zhang H (2010) Clinical study of neurorehabilitation in stroke using EEG-based motor imagery brain–computer interface with robotic feedback. In: 2010 annual international conference of the IEEE engineering in medicine and biology. IEEE, pp 5549–5552

  • Anuragi A, Sisodia DS (2019) Alcohol use disorder detection using EEG signal features and flexible analytical wavelet transform. Biomed Signal Process Control 52:384–393

    Article  Google Scholar 

  • Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Filho WJ, Lent R, Herculano-Houzel S (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513(5):532–541

    Article  PubMed  Google Scholar 

  • Behri M, Subasi A, Qaisar SM (2018) Comparison of machine learning methods for two class motor imagery tasks using EEG in brain–computer interface. In: 2018 advances in science and engineering technology international conferences (ASET). IEEE, pp 1–5

  • Berger H (1929) kber das Elektrencephalogramm des Menschen. Arch Psychiatr Nervenkr 87:5279570

    Article  Google Scholar 

  • Bhattacharyya A, Sharma M, Pachori RB, Sircar P, Acharya UR (2018) A novel approach for automated detection of focal EEG signals using empirical wavelet transform. Neural Comput Appl 29(8):47–57

    Article  Google Scholar 

  • Blanco JA, Vanleer AC, Calibo TK, Firebaugh SL (2019) Single-trial cognitive stress classification using portable wireless electroencephalography. Sensors 19(3):499

    Article  PubMed Central  Google Scholar 

  • Boersma M, Smit DJ, de Bie HM, Van Baal GCM, Boomsma DI, de Geus EJ, Delemarre-van de Waal HA, Stam CJ (2011) Network analysis of resting state EEG in the developing young brain: structure comes with maturation. Hum Brain Map 32(3):413–425

    Article  Google Scholar 

  • Bos DO (2006) EEG-based emotion recognition. Influ Vis Audit Stimuli 56(3):1–17

    Google Scholar 

  • Brovelli A, Battaglini PP, Naranjo JR, Budai R (2002) Medium-range oscillatory network and the 20-Hz sensorimotor induced potential. Neuroimage 16(1):130–141

    Article  PubMed  Google Scholar 

  • Chatterjee R, Maitra T, Islam SH, Hassan MM, Alamri A, Fortino G (2019a) A novel machine learning based feature selection for motor imagery EEG signal classification in Internet of medical things environment. Future Gener Comput Syst 98:419–434

    Article  Google Scholar 

  • Chatterjee R, Datta A, Sanyal DK (2019b) Ensemble learning approach to motor imagery EEG signal classification. In: Dey N, Ashour AS, Borra S, Shi F (eds) Machine learning in bio-signal analysis and diagnostic imaging. Academic Press, pp 183–208

    Chapter  Google Scholar 

  • Chaudhary S, Taran S, Bajaj V, Sengur A (2019) Convolutional neural network based approach towards motor imagery tasks EEG signals classification. IEEE Sens J 19(12):4494–4500

    Article  Google Scholar 

  • Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16:321–357

    Article  Google Scholar 

  • Chen JX, Mao ZJ, Yao WX, Huang YF (2020) EEG-based biometric identification with convolutional neural network. Multimed Tools Appl 79:10655–10675

    Article  Google Scholar 

  • Correa AG, Orosco L, Laciar E (2014) Automatic detection of drowsiness in EEG records based on multimodal analysis. Med Eng Phys 36(2):244–249

    Article  Google Scholar 

  • Ding Z, Fei M (2013) An anomaly detection approach based on isolation forest algorithm for streaming data using sliding window. IFAC Proc Vol 46(20):12–17

    Article  Google Scholar 

  • Estévez PA, Held CM, Holzmann CA, Perez CA, Pérez JP, Heiss J, Garrido M, Peirano P (2002) Polysomnographic pattern recognition for automated classification of sleep-waking states in infants. Med Biol Eng Comput 40(1):105–113

    Article  PubMed  Google Scholar 

  • EEG Eye State Data Set Available online: https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State

  • Ferrara M, De Gennaro L (2011) Going local: insights from EEG and stereo-EEG studies of the human sleep-wake cycle. Curr Top Med Chem 11(19):2423–2437

    Article  CAS  PubMed  Google Scholar 

  • Fraiwan L, Lweesy K, Khasawneh N, Wenz H, Dickhaus H (2012) Automated sleep stage identification system based on time–frequency analysis of a single EEG channel and random forest classifier. Comput Methods Programs Biomed 108(1):10–19

    Article  PubMed  Google Scholar 

  • Genuth I (2015) All in the mind [EEG]. Eng Technol 10(5):37–39

    Article  Google Scholar 

  • Ghosh-Dastidar S, Adeli H (2007) Improved spiking neural networks for EEG classification and epilepsy and seizure detection. Integr Comput Aided Eng 14(3):187–212

    Article  Google Scholar 

  • Haak M, Bos S, Panic S, Rothkrantz LJM (2009) Detecting stress using eye blinks and brain activity from EEG signals. In: Proceeding of the 1st driver car interaction and interface (DCII 2008), pp 35–60

  • Hosseinifard B, Moradi MH, Rostami R (2013) Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal. Comput Methods Programs Biomed 109(3):339–345

    Article  PubMed  Google Scholar 

  • Jiang D, Lu YN, Yu MA, Yuanyuan WANG (2019) Robust sleep stage classification with single-channel EEG signals using multimodal decomposition and HMM-based refinement. Expert Syst Appl 121:188–203

    Article  Google Scholar 

  • Jordan KG (2004) Emergency EEG and continuous EEG monitoring in acute ischemic stroke. J Clin Neurophysiol 21(5):341–352

    PubMed  Google Scholar 

  • Krigolson OE, Williams CC, Norton A, Hassall CD, Colino FL (2017) Choosing MUSE: validation of a low-cost, portable EEG system for ERP research. Front Neurosci 11:109

    Article  PubMed  PubMed Central  Google Scholar 

  • Królak A, Strumiłło P (2012) Eye-blink detection system for human–computer interaction. Univ Access Inf Soc 11(4):409–419

    Article  Google Scholar 

  • Lin CT, Chang CJ, Lin BS, Hung SH, Chao CF, Wang IJ (2010) A real-time wireless brain–computer interface system for drowsiness detection. IEEE Trans Biomed Circuits Syst 4(4):214–222

    Article  Google Scholar 

  • Mardi Z, Ashtiani SNM, Mikaili M (2011) EEG-based drowsiness detection for safe driving using chaotic features and statistical tests. J Med Signals Sens 1(2):130

    Article  PubMed  PubMed Central  Google Scholar 

  • Mumtaz W, Vuong PL, Xia L, Malik AS, Abd Rashid RB (2016) Automatic diagnosis of alcohol use disorder using EEG features. Knowl Based Syst 105:48–59

    Article  Google Scholar 

  • Mumtaz W, Xia L, Ali SSA, Yasin MAM, Hussain M, Malik AS (2017) Electroencephalogram (EEG)-based computer-aided technique to diagnose major depressive disorder (MDD). Biomed Signal Process Control 31:108–115

    Article  Google Scholar 

  • Mumtaz W, Ali SSA, Yasin MAM, Malik AS (2018) A machine learning framework involving EEG-based functional connectivity to diagnose major depressive disorder (MDD). Med Biol Eng Comput 56(2):233–246

    Article  PubMed  Google Scholar 

  • Pandey P, Seeja KR (2019) Emotional state recognition with EEG signals using subject independent approach. In: Mishra D, Yang XS, Unal A (eds) Data science and big data analytics. Springer, Singapore, pp 117–124

    Chapter  Google Scholar 

  • Patidar S, Pachori RB, Upadhyay A, Acharya UR (2017) An integrated alcoholic index using tunable-Q wavelet transform based features extracted from EEG signals for diagnosis of alcoholism. Appl Soft Comput 50:71–78

    Article  Google Scholar 

  • Plotnikov A, Stakheika N, De Gloria A, Schatten C, Bellotti F, Berta R, Fiorini C, Ansovini F (2012) Exploiting real-time EEG analysis for assessing flow in games. In: 2012 IEEE 12th international conference on advanced learning technologies. IEEE, pp 688–689

  • Powers DM (2011) Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation

  • Reddy TK, Behera L (2016) Online eye state recognition from EEG data using deep architectures. In: 2016 IEEE international conference on systems, man, and cybernetics (SMC). IEEE, pp 000712–000717

  • Rösler O, Suendermann D (2013) A first step towards eye state prediction using EEG. In: Proceedings of the AIHLS

  • Rytkönen KM, Zitting J, Porkka-Heiskanen T (2011) Automated sleep scoring in rats and mice using the naive Bayes classifier. J Neurosci Methods 202(1):60–64

    Article  PubMed  Google Scholar 

  • Sabancı K, Koklu M (2015) The classification of eye state by using kNN and MLP classification models according to the EEG signals. Int J Intell Syst Appl Eng 3(4):127–130

    Article  Google Scholar 

  • Saghafi A, Tsokos CP, Goudarzi M, Farhidzadeh H (2017) Random eye state change detection in real-time using EEG signals. Expert Syst Appl 72:42–48

    Article  Google Scholar 

  • Sandyk R (1990) The significance of eye blink rate in parkinsonism: a hypothesis. Int J Neurosci 51(1–2):99–103

    Article  CAS  PubMed  Google Scholar 

  • Sanei S, Chambers JA (2013) EEG signal processing. Wiley

    Google Scholar 

  • Sharma M, Achuth PV, Deb D, Puthankattil SD, Acharya UR (2018) An automated diagnosis of depression using three-channel bandwidth-duration localized wavelet filter bank with EEG signals. Cogn Syst Res 52:508–520

    Article  Google Scholar 

  • Shin Y, Lee S, Ahn M, Cho H, Jun SC, Lee HN (2015) Noise robustness analysis of sparse representation based classification method for non-stationary EEG signal classification. Biomed Signal Process Control 21:8–18

    Article  Google Scholar 

  • Sors A, Bonnet S, Mirek S, Vercueil L, Payen JF (2018) A convolutional neural network for sleep stage scoring from raw single-channel EEG. Biomed Signal Process Control 42:107–114

    Article  Google Scholar 

  • Stam CJ, Montez T, Jones BF, Rombouts SARB, Van Der Made Y, Pijnenburg YAL, Scheltens P (2005) Disturbed fluctuations of resting state EEG synchronization in Alzheimer’s disease. Clin Neurophysiol 116(3):708–715

    Article  CAS  PubMed  Google Scholar 

  • Subasi A (2007) EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl 32(4):1084–1093

    Article  Google Scholar 

  • Subasi A, Gursoy MI (2010) EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst Appl 37(12):8659–8666

    Article  Google Scholar 

  • Subha DP, Joseph PK, Acharya R, Lim CM (2010) EEG signal analysis: a survey. J Med Syst 34(2):195–212

    Article  PubMed  Google Scholar 

  • Sulaiman N, Taib MN, Aris SAM, Hamid NHA, Lias S, Murat ZH (2010) Stress features identification from EEG signals using EEG asymmetry & spectral centroids techniques. In: 2010 IEEE EMBS conference on biomedical engineering and sciences (IECBES). IEEE, pp 417–421

  • Tanaka H, Hayashi M, Hori T (1996) Statistical features of hypnagogic EEG measured by a new scoring system. Sleep 19(9):731–738

    Article  CAS  PubMed  Google Scholar 

  • Tzallas AT, Tsipouras MG, Fotiadis DI (2009) Epileptic seizure detection in EEGs using time–frequency analysis. IEEE Trans Inf Technol Biomed 13(5):703–710

    Article  PubMed  Google Scholar 

  • Vermani B, Hooda N, Kumar N (2015) Parametric evaluation of EEG signal during eyes close and eyes open state. In: 2015 annual IEEE India conference (INDICON). IEEE, pp 1–5

  • Wang T, Guan SU, Man KL, Ting TO (2014b) EEG eye state identification using incremental attribute learning with time-series classification. Math Probl Eng 2014:1–9

    Article  Google Scholar 

  • Wang T, Guan SU, Man KL, Ting TO (2014a) Time series classification for EEG eye state identification based on incremental attribute learning. In: 2014 international symposium on computer, consumer and control. IEEE, pp 158–161

  • Wang Q, Zhao D, Wang Y, Hou X (2019) Ensemble learning algorithm based on multi-parameters for sleep staging. Med Biol Eng Comput 57(8):1693–1707

    Article  PubMed  Google Scholar 

  • Wen D, Jia P, Lian Q, Zhou Y, Lu C (2016) Review of sparse representation-based classification methods on EEG signal processing for epilepsy detection, brain–computer interface and cognitive impairment. Front Aging Neurosci 8:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu H, Lei X, Song Z, Liu C, Wang J (2019) Supervised network-based fuzzy learning of EEG signals for Alzheimer’s disease identification. IEEE Trans Fuzzy Syst 28(1):60–71

    Article  Google Scholar 

  • Yuen CT, San San W, Seong TC, Rizon M (2009) Classification of human emotions from EEG signals using statistical features and neural network. Int J Integr Eng 1(3):71–79

    Google Scholar 

  • Yuvaraj R, Acharya UR, Hagiwara Y (2018) A novel Parkinson’s Disease Diagnosis Index using higher-order spectra features in EEG signals. Neural Comput Appl 30(4):1225–1235

    Article  Google Scholar 

  • Zhang X, Yao L, Zhang D, Wang X, Sheng QZ, Gu T (2017) Multi-person brain activity recognition via comprehensive EEG signal analysis. In: Proceedings of the 14th EAI international conference on mobile and ubiquitous systems: computing, networking and services, pp 28–37

  • Zhang T, Chen W, Li M (2019) Classification of inter-ictal and ictal EEGs using multi-basis MODWPT, dimensionality reduction algorithms and LS-SVM: a comparative study. Biomed Signal Process Control 47:240–251

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shwet Ketu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ketu, S., Mishra, P.K. Hybrid classification model for eye state detection using electroencephalogram signals. Cogn Neurodyn 16, 73–90 (2022). https://doi.org/10.1007/s11571-021-09678-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-021-09678-x

Keywords

Navigation