Skip to main content
Log in

Analysis of heart rate signals during meditation using visibility graph complexity

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

In the dynamics analysis of heart rate, the complexity of visibility graphs (VGs) is seen as a sign of short term variability in signals. The present study was conducted to investigate the possible impact of meditation on heart rate signals complexity using VG method. In this study, existing heart rate signals in Physionet database were used. The dynamics of the signals were then studied both before and during meditation by examining the complexity of VGs using graph index complexity (GIC). Generally, the obtained results showed that the heart rate signals were more complex during meditation. The simple process of calculating the GIC of VG and its adaptability to the chaotic nature of the biological signals can help in estimating the heart rate complexity in meditation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adeli H, Ghosh-Dastidar S, Dadmehr N (2007) A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Trans Biomed Eng 54:205–211

    Article  PubMed  Google Scholar 

  • Ahmadlou M, Adeli H, Adeli A (2010) New diagnostic EEG markers of the Alzheimer’s disease using visibility graph. J Neural Transm (Vienna, Austria: 1996) 117: 1099–1109

  • Alvarez-Estevez D, Moret-Bonillo V (2016) Spectral Heart Rate Variability analysis using the heart timing signal for the screening of the Sleep Apnea-Hypopnea Syndrome. Comput Biol Med 71:14–23

    Article  PubMed  Google Scholar 

  • Bhaduri S, Ghosh D (2015) Electroencephalographic data analysis with visibility graph technique for quantitative assessment of brain dysfunction. Clin EEG Neurosci 46:218–223

    Article  PubMed  Google Scholar 

  • Bhaduri A, Ghosh D (2016) Quantitative assessment of heart rate dynamics during meditation: an ECG based study with multi-fractality and visibility graph. Front Physiol 7:44–54

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhaduri A, Bhaduri S, Ghosh D (2017) Visibility graph analysis of heart rate time series and bio-marker of congestive heart failure. Physica A 482:786–795

    Article  CAS  Google Scholar 

  • Conte E, Khrennikov A, Federici A, Zbilut JP (2009) Fractal fluctuations and quantum-like chaos in the brain by analysis of variability of brain waves: a new method based on a fractal variance function and random matrix theory. Chaos Solitons Fractals 41:2790–2800

    Article  Google Scholar 

  • Costa-Neto CM, Dillenburg-Pilla P, Heinrich TA, Parreiras-e-Silva LT, Pereira MG, Reis RI, Souza PP (2008) Participation of kallikrein–kinin system in different pathologies. Int Immunopharmacol 8:135–142

    Article  CAS  PubMed  Google Scholar 

  • Dasdemir Y, Yildirim E, Yildirim S (2017) Analysis of functional brain connections for positive–negative emotions using phase locking value. Cogn Neurodyn 11:487–500

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong Z, Li X (2010) Comment on ‘Network analysis of human heartbeat dynamics. Appl Phys Lett 96:266101

    Article  CAS  Google Scholar 

  • Donne RV, Donges JF (2012) Visibility graph analysis of geophysical time series: potentials and possible pitfalls. Acta Geophys 60:589–623

    Article  Google Scholar 

  • Donner RV, Small M, Donges JF, Marwan N, Zou Y, Xiang R, Kurths J (2011) Recurrence-based time series analysis by means of complex network methods. Int J Bifurc Chaos 21:1019–1046

    Article  Google Scholar 

  • Fingelkurts AA, Fingelkurts AA, Kallio-Tamminen T (2015) EEG-guided meditation: a personalized approach. J Physiol Paris 109:180–190

    Article  PubMed  Google Scholar 

  • Goshvarpour A, Goshvarpour A (2012) Chaotic behavior of heart rate signals during Chi and Kundalini meditation. Int J Image Graph Signal Process 4:23–29

    Article  Google Scholar 

  • Goshvarpour A, Goshvarpour A (2013) Comparison of higher order spectra in heart rate signals during two techniques of meditation: Chi and Kundalini meditation. Cogn Neurodyn 7:39–46

    Article  PubMed  Google Scholar 

  • Goshvarpour A, Goshvarpour A, Rahati S, Saadatian V (2012) Bispectrum estimation of electroencephalogram signals during meditation. Iran J Psychiatry Behav Sci 6:48–54

    PubMed  PubMed Central  Google Scholar 

  • Hascoët S, Warin-Fresse K, Baruteau AE, Hadeed K, Karsenty C, Petit J, Guérin P, Fraisse A, Acar P (2016) Cardiac imaging of congenital heart diseases during interventional procedures continues to evolve: pros and cons of the main techniques. Arch Cardiovasc Dis 109:128–142

    Article  PubMed  Google Scholar 

  • Hernández SE, Barros-Loscertales A, Xiao Y, González-Mora JL, Rubia K (2018) Gray matter and functional connectivity in anterior cingulate cortex are associated with the state of mental silence during Sahaja Yoga Meditation. Neuroscience 371:395–406

    Article  CAS  PubMed  Google Scholar 

  • Jiang S, Bian C, Ning X, Ma QDY (2013) Visibility graph analysis on heart beat dynamics of meditation training. Appl Phys Lett 102:253–702

    Google Scholar 

  • Kim J, Wilhelm T (2008) What is a complex graph? Phys A Stat Mech Appl 387:2637–2652

    Article  Google Scholar 

  • Kim DK, Lee KM, Kim J, Whang MC, Kang SW (2013) Dynamic correlations between heart and brain rhythm during autogenic meditation. Front Hum Neurosci 7:414

    PubMed  PubMed Central  Google Scholar 

  • Lacasa L, Luque B, Ballesteros F, Luque J, Nuno JC (2008) From time series to complex networks: the visibility graph. Natl Acad Sci USA 105:4972–4975

    Article  Google Scholar 

  • Lacasa L, Luque B, Luque J, Nuno JC (2009) The visibility graph: a new method for estimating the Hurst exponent of fractional Brownian motion. EPL (Europhys Lett) 86:30001–30004

    Article  CAS  Google Scholar 

  • Lehrer P, Eddie D (2013) Dynamic processes in regulation and some implications for biofeedback and biobehavioral interventions. Appl Psychophysiol Biofeedback 38:143–155

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Dong Z (2011) Detection and prediction of the onset of human ventricular fibrillation: an approach based on complex network theory. Phys Rev E Stat Nonlinear Soft Matter Phys 84:062901

    Article  CAS  Google Scholar 

  • Li Y, Wang J, Li J, Liu D (2015) Effect of extreme data loss on heart rate signals quantified by entropy analysis. Physica A 419:651–658

    Article  Google Scholar 

  • Maity AK, Pratihar R, Mitra A, Dey S, Agrawal V, Sanyal S, Banerjee A, Sengupta R, Ghosh D (2015) Multifractal detrended fluctuation analysis of alpha and theta EEG rhythms with musical stimuli. Chaos Solitons Fractals 81:52–67

    Article  Google Scholar 

  • Mohammadpoory Z, Nasrolahzadeh M, Haddadnia J (2017) Epileptic seizure detection in EEG signals based on the weighted visibility graph entropy. Seizure Eur J Epilepsy 50:202–208

    Article  Google Scholar 

  • Mumtaz W, Vuong PL, Xia L, Malik AS, Rashid RBA (2017) An EEG-based machine learning method to screen alcohol use disorder. Cogn Neurodyn 11:161–171

    Article  PubMed  Google Scholar 

  • Nasrolahzadeh M, Haddadnia J (2014) Analysis of mean square estimation surface and its corresponding contour plots of heart rate signals during meditation with adaptive wiener filter. In: 8th middle east cardiovascular congress, 4–6 June 2014, Istanbul, Turkey

  • Nunez AM, Lacasa L, Gomez JP, Luque B (2012) Visibility algorithms: a short review. In: Zhang YG (ed) New frontiers in graph theory. Intech Press, ch. 6

  • Patidar S, Pachori RB, RajendraAcharya U (2015) Automated diagnosis of coronary artery disease using tunable-Q wavelet transform applied on heart rate signals. Knowl Based Syst 82:1–10

    Article  Google Scholar 

  • Peng CK, Henry IC (2004) Heart rate dynamics during three forms of meditation. Int J Cardiol 95:19–27

    Article  PubMed  Google Scholar 

  • Peng CK, Mietus JE, Liu Y, Khalsa G, Douglas PS, Benson H, Goldberger AL (1999) Exaggerated heart rate oscillations during two meditation techniques. Int J Cardiol 70:101–107

    Article  CAS  PubMed  Google Scholar 

  • Pu J, Xu H, Wang Y, Cui H, Hu Y (2016) Combined nonlinear metrics to evaluate spontaneous EEG recordings from chronic spinal cord injury in a rat model: a pilot study. Cogn Neurodyn 10:367–373

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanz-Lobera A, González I, Rodríguez J, Luque B (2015) Feasibility study for visibility algorithms implementation in surface texture characterization. Proc Eng 132:816–823

    Article  Google Scholar 

  • Sarkar A, Barat P (2008) Effect of meditation on scaling behavior and complexity of human heart rate variability. Fractals 16:199. https://doi.org/10.1142/S0218348X08003983

    Article  Google Scholar 

  • Shao ZG (2010) Network analysis of human heartbeat dynamics. Appl Phys Lett 96:073703

    Article  CAS  Google Scholar 

  • Tang X, Xia L, Liao Y, Liu W, Peng Y, Gao T, Zeng Y (2013) New approach to epileptic diagnosis using visibility graph of high-frequency signal. Clin EEG Neurosci 44:150–156

    Article  PubMed  Google Scholar 

  • Toledo E, Gurevitz O, Hod H, Eldar M, Akselrod S (1998) The use of a wavelet transform for the analysis of nonstationary heart rate variability signal during thrombolytic therapy as a marker of reperfusion. Comput Cardiol 25 (Cat. No. 98CH36292). https://doi.org/10.1109/cic.1998.731947

  • Travis F, Valosek L, Konrad A IV, Link J, Salerno J, Scheller R, Nidich S (2018) Effect of meditation on psychological distress and brain functioning: a randomized controlled study. Brain Cogn 125:100–105

    Article  PubMed  Google Scholar 

  • Yun JS, Ahn YB, Song KH, Yoo KD, Kim HW, Park YM, Ko SH (2015) The association between abnormal heart rate variability and new onset of chronic kidney disease in patients with type 2 diabetes: a ten-year follow-up study. Diabetes Res Clin Pract 108:31–37

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahda Nasrolahzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasrolahzadeh, M., Mohammadpoory, Z. & Haddadnia, J. Analysis of heart rate signals during meditation using visibility graph complexity. Cogn Neurodyn 13, 45–52 (2019). https://doi.org/10.1007/s11571-018-9501-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-018-9501-5

Keywords

Navigation