Skip to main content
Log in

Synchrony based learning rule of Hopfield like chaotic neural networks with desirable structure

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

In this paper a new learning rule for the coupling weights tuning of Hopfield like chaotic neural networks is developed in such a way that all neurons behave in a synchronous manner, while the desirable structure of the network is preserved during the learning process. The proposed learning rule is based on sufficient synchronization criteria, on the eigenvalues of the weight matrix belonging to the neural network and the idea of Structured Inverse Eigenvalue Problem. Our developed learning rule not only synchronizes all neuron’s outputs with each other in a desirable topology, but also enables us to enhance the synchronizability of the networks by choosing the appropriate set of weight matrix eigenvalues. Specifically, this method is evaluated by performing simulations on the scale-free topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aihara K, Takada T, Toyoda M (1990) Chaotic neural networks. Phys Lett A 144:333–340

    Article  Google Scholar 

  • Anninos P, Beek B, Harth E, Pertile G (1970) Dynamics of neural structures. J Theor Biol 26:121–148

    Article  CAS  PubMed  Google Scholar 

  • Babloyantz A, Lourenco C (1994) Computation with chaos: a paradigm for cortical activity. Proc Natl Acad Sci USA 91:9027–9031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    Article  PubMed  Google Scholar 

  • Churchland PS, Sejnowski TJ (1989) The computational brain. MIT press, Cambridge

    Google Scholar 

  • Comellas F, Gago S (2007) Synchronizability of complex networks. J of Phys A: Math and Theor 40:4483–4492

    Article  Google Scholar 

  • Farhat NH (1998) Biomorphic dynamical networks for cognition and control. J Intell Robot Syst 21:167–177

    Article  Google Scholar 

  • Farhat NH (2000) Corticonics: the way to designing machines with brain like intelligence. Proc SPIE Critical Technol Future Comput 4109:103–109

    Article  Google Scholar 

  • Harth E (1983) Order and chaos in neural systems: an approach to the dynamics of higher brain functions. IEEE Trans Syst Man Cybern 13:782–789

    Article  Google Scholar 

  • Harth E, Csermely TJ, Beek B, Lindsay RD (1970) Brain function and neural dynamics. J Theor Biol 26:93–120

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich EM (2007) Dynamical systems in neuroscience. MIT Press, Cambridge

    Google Scholar 

  • Lee RST (2004) A transient-chaotic auto associative network based on Lee oscilator. IEEE Trans on Neural Networks 15:1228–1243

    Article  CAS  Google Scholar 

  • Lee G, Farhat NH (2001) Parametrically coupled sine map networks. Int J Bifurcat Chaos 11:1815–1834

    Article  Google Scholar 

  • Li Z, Chen G (2006) Global synchronization and asymptotic stability of complex dynamical networks. IEEE Trans on Circuits and Systems-II 53:28–33

    Article  Google Scholar 

  • Li Z, Jiao L, Lee J (2008) Robust adaptive global synchronization of complex dynamical networks by adjusting time-varying coupling strength. PhysicaA 387:1369–1380

    Article  Google Scholar 

  • Liu H, Chen J, Lu J, Cao M (2010) Generalized synchronization in complex dynamical networks via adaptive couplings. PhysicaA 389:1759–1770

    Article  CAS  Google Scholar 

  • Lopez-Ruiz R, Fournier-Prunaret D (2009) Periodic and chaotic events in a discrete model of logistic type for the competitive interaction of two species. Chaos, Solitons Fractals 41:334–347

    Article  Google Scholar 

  • Lü J, Yu X, Chen G (2004) Chaos synchronization of general complex dynamical networks. PhysicaA 334:281–302

    Article  Google Scholar 

  • Ma J, Wu J (2006) Bifurcation and multistability in coupled neural networks with non-monotonic communication. Technical report Math dept, York University, Toronto

    Google Scholar 

  • Mahdavi N, Menhaj MB (2011) A new set of sufficient conditions based on coupling parameters for synchronization of Hopfield like chaotic neural networks. Int J control Auto and Syst 9:104–111

    Article  Google Scholar 

  • Moody TC, Golub GH (2005) Inverse eigenvalue problems: theory, algorithms and applications. Numerical mathematics and scientific computation series. Oxford press, Oxford

    Google Scholar 

  • Mpitsos GJ, Burton RM, Creech HC, Soinila SO (1988a) Evidence for chaos in spike trains of neurons that generate rhythmic motor patterns. Brain Res Bull 21:529–538

    Article  CAS  PubMed  Google Scholar 

  • Mpitsos GJ, Burton RM, Creech HC (1988b) Connectionist networks learn to transmit chaos. Brain Res Bull 21:539–546

    Article  CAS  PubMed  Google Scholar 

  • Nakano H, Saito T (2004) Grouping synchronization in a pulse-coupled network of chaotic spiking oscillators. IEEE Trans Neural Networks 15:1018–1026

    Article  CAS  Google Scholar 

  • Pashaie R, Farhat NH (2009) Self organization in a parametrically coupled logistic map network: a model for information processing in the Visual Cortex. IEEE Trans on Neural Networks 20:597–608

    Article  Google Scholar 

  • Ponce MC, Masoller C, Marti AC (2009) Synchronizability of chaotic logistic maps in delayed complex networks. Eur Phys J B 67:83–93

    Article  Google Scholar 

  • Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations? Neuron 24:49–65

    Article  CAS  PubMed  Google Scholar 

  • Tanaka G, Aihara K (2005) Multistate associative memory with parametrically coupled map networks. Int J Bifurcat Chaos 15:1395–1410

    Article  Google Scholar 

  • Uhlhaas PJ, Singer W (2006) Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52:155–168

    Article  CAS  PubMed  Google Scholar 

  • Wang L (2007) Interactions between neural networks: a mechanism for tuning chaos and oscillations. Cogn Neurodyn 1:185–188

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang L, Ross J (1990) Interactions of neural networks: model for distraction and concentration. Proc Natl Acad Sci USA 87:7110–7114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang L, Pichler EE, Ross J (1990) Oscillations and chaos in neural networks: an exactly solvable model. Proc Natl Acad Sci USA 87:9467–9471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang L, Yu W, Shi H, Zurada JM (2007) Cellular neural networks with transient chaos. IEEE Trans on circuits and systems-II: express briefs 54:440–444

    Article  Google Scholar 

  • Wang WX, Huang L, Lai YC, Chen G (2009) Onset of synchronization in weighted scale-free networks. Chaos 19:013134

    Article  PubMed  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393:440–442

    Article  CAS  PubMed  Google Scholar 

  • Xu YH, Zhou WN, Fang JA, Lu HQ (2009) Structure identification and adaptive synchronization of uncertain general complex dynamical networks. Phys Lett A 374:272–278

    Article  CAS  Google Scholar 

  • Zhou C, Kurths J (2006) Dynamical weights and enhanced synchronization in adaptive complex networks. Phys Rev Lett 96:164102

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nariman Mahdavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahdavi, N., Kurths, J. Synchrony based learning rule of Hopfield like chaotic neural networks with desirable structure. Cogn Neurodyn 8, 151–156 (2014). https://doi.org/10.1007/s11571-013-9260-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-013-9260-2

Keywords

Navigation