Skip to main content
Log in

Time-smoothing for parabolic variational problems in metric measure spaces

  • Published:
ANNALI DELL'UNIVERSITA' DI FERRARA Aims and scope Submit manuscript

Abstract

In 2013, Masson and Siljander determined a method to prove that the minimal p-weak upper gradient \(g_{f_\varepsilon }\) for the time mollification \(f_\varepsilon \), \(\varepsilon >0\), of a parabolic Newton–Sobolev function \(f\in L^p_\mathrm {loc}(0,\tau ;N^{1,p}_\mathrm {loc}(\Omega ))\), with \(\tau >0\) and \(\Omega \) open domain in a doubling metric measure space \((\mathbb {X},d,\mu )\) supporting a weak (1, p)-Poincaré inequality, \(p\in (1,\infty )\), is such that \(g_{f-f_\varepsilon }\rightarrow 0\) as \(\varepsilon \rightarrow 0\) in \(L^p_\mathrm {loc}(\Omega _\tau )\), \(\Omega _\tau \) being the parabolic cylinder \(\Omega _\tau :=\Omega \times (0,\tau )\). Their approach involved the use of Cheeger’s differential structure, and therefore exhibited some limitations; here, we shall see that the definition and the formal properties of the parabolic Sobolev spaces themselves allow to find a more direct method to show such convergence, which relies on p-weak upper gradients only and which is valid regardless of structural assumptions on the ambient space, also in the limiting case when \(p=1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The lack of partial estimates at the early stages of [6] was actually the starting point of the present study.

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent. Math. 195(2), 289–391 (2014)

    Article  MathSciNet  Google Scholar 

  2. Ambrosio, L., Gigli, N., Savaré, G.: Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. Rev. Mat. Iberoam. 29(3), 969–996 (2013)

    Article  MathSciNet  Google Scholar 

  3. Bochner, S.: Integration von Funktionen, deren Werte die Elemente eines Vektorraumes sind. Fundamenta Mathematicae 20, 262–276 (1933)

    Article  Google Scholar 

  4. Bögelein, V., Duzaar, F., Marcellini, P.: A time dependent variational approach to image restoration. SIAM J. Imaging Sci. 8(2), 968–1006 (2015)

    Article  MathSciNet  Google Scholar 

  5. Buffa, V., Collins, M., Pacchiano Camacho, C.: Existence of parabolic minimizers to the total variation flow on metric measure spaces. Manuscripta Math. (2022). https://doi.org/10.1007/s00229-021-01350-2

    Article  Google Scholar 

  6. Buffa, V., Kinnunen, J.K., Pacchiano Camacho, C.: Variational solutions to the total variation flow on metric measure spaces. Nonlinear Analysis, 2022 (to appear). arXiv:2109.11908

  7. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9(3), 428–517 (1999)

    Article  MathSciNet  Google Scholar 

  8. Collins, M., Herán, A.: Existence of parabolic minimizers on metric measure spaces. Nonlinear Anal. 176, 56–83 (2018)

    Article  MathSciNet  Google Scholar 

  9. Diestel, J., J. Uhl Jr.: Vector measures. With a foreword by B. J. Pettis. In: Mathematical Surveys, vol. 15, American Mathematical Society, Providence, xiii+322 pp (1977)

  10. Dunford, N., Schwartz, J.: Linear Operators. I. General Theory. With the Assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, vol. 7, Interscience Publishers, Inc., Interscience Publishers, Ltd., London, xiv+858 pp (1958)

  11. Fuglede, B.: Extremal length and functional completion. Acta Math. 98, 171–219 (1957)

    Article  MathSciNet  Google Scholar 

  12. Fujishima, Y., Habermann, J.: Global higher integrability for non-quadratic parabolic quasi-minimizers on metric measure spaces. Adv. Calc. Var. 10(3), 267–301 (2017)

    Article  MathSciNet  Google Scholar 

  13. Fujishima, Y., Habermann, J.: Stability for parabolic quasi minimizers in metric measure spaces. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 29(2), 343–376 (2018)

    Article  MathSciNet  Google Scholar 

  14. Habermann, J.: Higher integrability for vector-valued parabolic quasi-minimizers on metric measure spaces. Ark. Mat. 54(1), 85–123 (2016)

    Article  MathSciNet  Google Scholar 

  15. Heinonen, J., Koskela, P.: From local to global in quasiconformal structures. Proc. Nat. Acad. Sci. USA 93(2), 554–556 (1996)

    Article  MathSciNet  Google Scholar 

  16. Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181(1), 1–61 (1998)

    Article  MathSciNet  Google Scholar 

  17. Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.T.: Sobolev spaces on metric measure spaces: an approach based on upper gradients. In: New Mathematical Monographs, vol. 27, Cambridge University Press, Cambridge, xii+434 pp (2015)

  18. Hytönen, T., van Neerven, J., Veraar, M., Weis, L.: Analysis in Banach spaces. In: Martingales and Littlewood–Paley Theory, vol. I. Results in Mathematics and Related Areas, 3rd Series. A Series of Modern Surveys in Mathematics, vol. 63. Springer, Cham, xvi+614 pp (2016)

  19. Kinnunen, J., Masson, M.: Parabolic comparison principle and quasiminimizers in metric measure spaces. Proc. Am. Math. Soc. 143(2), 621–632 (2015)

    Article  MathSciNet  Google Scholar 

  20. Koskela, P., MacManus, P.: Quasiconformal mappings and Sobolev spaces. Studia Math. 131(1), 1–17 (1998)

    MathSciNet  MATH  Google Scholar 

  21. Kufner, A., John, O., Fučík, S.: Function spaces. In: Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis. Noordhoff International Publishing, Leyden; Academia, Prague, xv+454 pp(1977)

  22. Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires (French). Dunod; Gauthier-Villars, Paris, xx+554 pp (1969)

  23. Marola, N., Masson, M.: On the Harnack inequality for parabolic minimizers in metric measure spaces. Tohoku Math. J. (2) 65(4), 569–589 (2013)

    Article  MathSciNet  Google Scholar 

  24. Masson, M., Miranda, M., Jr., Paronetto, F., Parviainen, M.: Local higher integrability for parabolic quasiminimizers in metric spaces. Ric. Mat. 62(2), 279–305 (2013)

    Article  MathSciNet  Google Scholar 

  25. Masson, M., Parviainen, M.: Global higher integrability for parabolic quasiminimizers in metric measure spaces. J. Anal. Math. 126, 307–339 (2015)

    Article  MathSciNet  Google Scholar 

  26. Masson, M., Siljander, J.: Hölder regularity for parabolic De Giorgi classes in metric measure spaces. Manuscripta Math. 142(1–2), 187–214 (2013)

    Article  MathSciNet  Google Scholar 

  27. Miranda, M., Jr.: Functions of bounded variation on “good’’ metric spaces. J. Math. Pures Appl. (9) 82(8), 975–1004 (2003)

    Article  MathSciNet  Google Scholar 

  28. Růžička, M.: Nichtlineare Funktionalanalysis: Eine Einführung. Springer Lehrbuch Masterclass, Springer, Berlin (2004)

    MATH  Google Scholar 

  29. Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoamericana 16(2), 243–279 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Academy of Finland during the Author’s stay at the Department of Mathematics and Systems Analysis at Aalto University (Espoo, Finland).

We wish to thank Juha K. Kinnunen for valuable discussions on the topic of time-smoothing in metric measure spaces and for encouraging the writing of this paper.

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buffa, V. Time-smoothing for parabolic variational problems in metric measure spaces. Ann Univ Ferrara 68, 103–115 (2022). https://doi.org/10.1007/s11565-022-00389-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11565-022-00389-7

Keywords

Mathematics Subject Classification

Navigation