Skip to main content
Log in

Was gibt es Neues in der CKD-MBD-Pathogenese?

What’s new in CKD-MBD pathogenesis?

  • Leitthema
  • Published:
Der Nephrologe Aims and scope

Zusammenfassung

In den letzten Jahren wurde unser pathophysiologisches Verständnis des Kalzium-Phosphat-Haushalts durch die Entdeckung von Klotho und FGF-23 revolutioniert: In Anwesenheit des Korezeptors Klotho bindet FGF-23 an den FGF-Rezeptor auf renalen Zielzellen und bewirkt eine vermehrte renale Phosphatausscheidung sowie eine verminderte Bildung von Calcitriol, wodurch eine negative Phosphatbilanz resultiert. Trotz dieser vermeintlich protektiven Eigenschaft waren in zahlreichen Kohortenstudien erhöhte FGF-23-Plasmaspiegel prädiktiv für kardiovaskuläre Ereignisse und Todesfälle. In Einklang wurde in experimentellen Arbeiten eine direkte, Klotho-unabhängige myokardtoxische Wirkung von FGF-23 beschrieben. Neben der membranständigen Form von Klotho, die als Korezeptor von FGF-23 dient, existiert eine lösliche Form von Klotho (sKlotho). sKlotho wurde mit parakrinen und endokrinen protektiven Effekten assoziiert, deren genaue biologische Bedeutung allerdings noch inkomplett verstanden ist, allerdings zumindest experimentell den Effekten von FGF-23 ähnelt.

Abstract

Knowledge on the pathophysiology of calcium phosphate metabolism has recently been revolutionized by the discovery of Klotho and fibroblast growth factor (FGF) 23. In the presence of its co-receptor Klotho, FGF-23 binds to receptors on renal cells resulting in an increased renal phosphate excretion and reduced synthesis of calcitriol leading subsequently to a negative phosphate balance. Despite these seemingly protective effects, numerous cohort studies identified elevated FGF-23 as a strong predictor of increased cardiovascular morbidity and mortality. In line with these findings experimental studies recently revealed a direct Klotho-independent toxic effect of FGF-23 on myocardial cells. In addition to the membrane bound form, which serves as the FGF-23 co-receptor, a secreted soluble variant (sKlotho) was recently discovered which has been associated with paracrine and endocrine protective functions. Although the biological relevance of sKlotho remains to be elucidated its effects are at least experimentally similar to those of FGF-23.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Goetz R, Beenken A, Ibrahimi OA et al (2007) Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol 27:3417–3428

    Article  PubMed  CAS  Google Scholar 

  2. Yamashita T (2005) Structural and biochemical properties of fibroblast growth factor 23. Ther Apher Dial 9:313–318

    Article  PubMed  CAS  Google Scholar 

  3. Riminucci M, Collins MT, Fedarko NS et al (2003) FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Clin Invest 112:683–692

    PubMed  CAS  Google Scholar 

  4. Benet-Pages A, Lorenz-Depiereux B, Zischka H et al (2004) FGF23 is processed by proprotein convertases but not by PHEX. Bone 35:455–462

    Article  PubMed  CAS  Google Scholar 

  5. Nakayama K (1997) Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem J 327:625–635

    PubMed  CAS  Google Scholar 

  6. Shimada T, Muto T, Urakawa I et al (2002) Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and causes hypophosphatemia in vivo. Endocrinology 143:3179–3182

    Article  PubMed  CAS  Google Scholar 

  7. Tohyama O, Imura A, Iwano A et al (2004) Klotho is a novel beta-glucuronidase capable of hydrolyzing steroid beta-glucuronides. J Biol Chem 279:9777–9784

    Article  PubMed  CAS  Google Scholar 

  8. Miyamoto K, Segawa H, Ito M et al (2004) Physiological regulation of renal sodium-dependent phosphate cotransporters. Jpn J Physiol 54:93–102

    Article  PubMed  CAS  Google Scholar 

  9. Miyamoto K, Ito M, Kuwahata M et al (2005) Inhibition of intestinal sodium-dependent inorganic phosphate transport by fibroblast growth factor 23. Ther Apher Dial 9:331–335

    Article  PubMed  CAS  Google Scholar 

  10. Krajisnik T, Bjorklund P, Marsell R et al (2007) Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha-hydroxylase expression in cultured bovine parathyroid cells. J Endocrinol 195:125–131

    Article  PubMed  CAS  Google Scholar 

  11. Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V et al (2007) The parathyroid is a target organ for FGF23 in rats. J Clin Invest 117:4003–4008

    PubMed  CAS  Google Scholar 

  12. Hofman-Bang J, Martuseviciene G, Santini MA et al (2010) Increased parathyroid expression of Klotho in uremic rats. Kidney Int 78:1119–1127

    Article  PubMed  CAS  Google Scholar 

  13. Larsson T, Nisbeth U, Ljunggren O et al (2003) Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int 64:2272–2279

    Article  PubMed  CAS  Google Scholar 

  14. Imanishi Y, Inaba M, Nakatsuka K et al (2004) FGF-23 in patients with end-stage renal disease on hemodialysis. Kidney Int 65:1943–1946

    Article  PubMed  CAS  Google Scholar 

  15. Fliser D, Kollerits B, Neyer U et al (2007) Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) Study. J Am Soc Nephrol 18:2600–2608

    Article  PubMed  CAS  Google Scholar 

  16. Isakova T, Xie H, Yang W et al (2011) Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA 305:2432–2439

    Article  PubMed  CAS  Google Scholar 

  17. Kendrick J, Cheung AK, Kaufman JS et al (2011) FGF-23 associates with death, cardiovascular events, and initiation of chronic dialysis. J Am Soc Nephrol 22:1913–1922

    Article  PubMed  CAS  Google Scholar 

  18. Jean G, Terrat JC, Vanel T et al (2009) High levels of serum fibroblast growth factor (FGF)-23 are associated with increased mortality in long haemodialysis patients. Nephrol Dial Transplant 24:2792–2796

    Article  PubMed  CAS  Google Scholar 

  19. Gutiérrez OM, Mannstadt M, Isakova T et al (2008) Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 359:584–592

    Article  PubMed  Google Scholar 

  20. Seiler S, Reichart B, Roth D et al (2010) FGF-23 and future cardiovascular events in patients with chronic kidney disease before initiation of dialysis treatment. Nephrol Dial Transplant 25:3983–3989

    Article  PubMed  CAS  Google Scholar 

  21. Nakano C, Hamano T, Fujii N et al (2012) Intact fibroblast growth factor 23 levels predict incident cardiovascular event before but not after the start of dialysis. Bone 50:1266–1274

    Article  PubMed  CAS  Google Scholar 

  22. Parker BD, Schurgers LJ, Brandenburg VM et al (2010) The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease: the Heart and Soul Study. Ann Intern Med 152:640–648

    PubMed  Google Scholar 

  23. Taylor EN, Rimm EB, Stampfer MJ, Curhan GC (2011) Plasma fibroblast growth factor 23, parathyroid hormone, phosphorus, and risk of coronary heart disease. Am Heart J 161:956–962

    Article  PubMed  CAS  Google Scholar 

  24. Ix JH, Katz R, Kestenbaum BR et al (2012) Fibroblast growth factor-23 and death, heart failure, and cardiovascular events in community-living individuals: CHS (Cardiovascular Health Study). J Am Coll Cardiol 60:200–207

    Article  PubMed  CAS  Google Scholar 

  25. Udell JA, O’Donnell T, Morrow D et al (2012) Association of fibroblast growth factor (FGF)-23 levels with risk of cardiovascular events in patients with stable coronary artery disease. J Am Coll Cardiol 59:E1480

    Article  Google Scholar 

  26. Seiler S, Cremers B, Rebling NM et al (2011) The phosphatonin fibroblast growth factor 23 links calcium-phosphate metabolism with left-ventricular dysfunction and atrial fibrillation. Eur Heart J 32:2688–2696

    Article  PubMed  CAS  Google Scholar 

  27. Faul C, Amaral AP, Oskouei B et al (2011) FGF23 induces left ventricular hypertrophy. J Clin Invest 121:4393–4408

    Article  PubMed  CAS  Google Scholar 

  28. Isakova T, Wahl P, Vargas GS et al (2011) Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 79:1370–1378

    Article  PubMed  CAS  Google Scholar 

  29. John GB, Cheng CY, Kuro OM (2011) Role of Klotho in aging, phosphate metabolism, and CKD. Am J Kidney Dis 58:127–134

    Article  PubMed  CAS  Google Scholar 

  30. Koh N, Fujimori T, Nishiguchi S et al (2001) Severely reduced production of klotho in human chronic renal failure kidney. Biochem Biophys Res Commun 280:1015–1020

    Article  PubMed  CAS  Google Scholar 

  31. Hu MC, Shi M, Zhang J et al (2011) Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol 22:124–136

    Article  PubMed  CAS  Google Scholar 

  32. Kuro-o M (2012) Klotho in health and disease. Curr Opin Nephrol Hypertens 21:362–368

    Article  PubMed  CAS  Google Scholar 

  33. Yamazaki Y, Imura A, Urakawa I et al (2010) Establishment of sandwich ELISA for soluble alpha-Klotho measurement: Age-dependent change of soluble alpha-Klotho levels in healthy subjects. Biochem Biophys Res Commun 398:513–518

    Article  PubMed  CAS  Google Scholar 

  34. Semba RD, Cappola AR, Sun K et al (2011) Plasma klotho and mortality risk in older community-dwelling adults. J Gerontol A Biol Sci Med Sci 6:794–800

    Article  Google Scholar 

  35. Seiler S, Wen M, Roth HJ et al (2012) Plasma Klotho is not related to kidney function and does not predict adverse outcome in patients with chronic kidney disease. Kidney Int [Epub ahead of print]

  36. Shimamura Y, Hamada K, Inoue K et al (2012) Serum levels of soluble secreted α-Klotho are decreased in the early stages of chronic kidney disease, making it a probable novel biomarker for early diagnosis. Clin Exp Nephrol 16:722–729

    Article  PubMed  CAS  Google Scholar 

  37. Akimoto T, Shiizaki K, Sugase T et al (2012) The relationship between the soluble Klotho protein and the residual renal function among peritoneal dialysis patients. Clin Exp Nephrol 16:442–447

    Article  PubMed  CAS  Google Scholar 

  38. Devaraj S, Syed B, Chien A et al (2012) Validation of an immunoassay for soluble Klotho protein: decreased levels in diabetes and increased levels in chronic kidney disease. Am J Clin Pathol 137:479–485

    Article  PubMed  CAS  Google Scholar 

  39. Isakova T, Gutiérrez OM, Chang Y et al (2009) Phosphorus binders and survival on hemodialysis. J Am Soc Nephrol 20:388–396

    Article  PubMed  CAS  Google Scholar 

  40. Drüeke TB, Massy ZA (2012) Phosphate binders in CKD: bad news or good news? J Am Soc Nephrol 23:1277–1280

    Article  PubMed  Google Scholar 

  41. Shalhoub V, Shatzen EM, Ward SC et al (2012) FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality. J Clin Invest 122:2543–2553

    Article  PubMed  CAS  Google Scholar 

  42. Heine GH, Seiler S, Fliser D (2012) FGF-23: the rise of a novel cardiovascular risk marker in CKD. Nephrol Dial Transplant 27:3072–3081

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Die korrespondierende Autorin weist auf folgende Beziehungen hin: GHH hat Vortragshonrare von der Fa. Shire erhalten. DF hat Vortrags- und Beraterhonorare von Amgen, Abbott, Sanofi-enzyme, Shire und FMC erhalten. SS: kein Interessenkonflikt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Seiler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seiler, S., Heine, G. & Fliser, D. Was gibt es Neues in der CKD-MBD-Pathogenese?. Nephrologe 8, 13–20 (2013). https://doi.org/10.1007/s11560-012-0646-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11560-012-0646-7

Schlüsselwörter

Keywords

Navigation