Skip to main content

Advertisement

Log in

Molecular phylogeny and morphology reveal three novel species of Curvularia (Pleosporales, Pleosporaceae) associated with cereal crops and weedy grass hosts

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

The genus Curvularia comprises phytopathogenic, saprobic, epiphytic and endophytic fungal species associated with cereal crops and their wild relatives. Recently, multi-locus phylogenetic studies have been widely implemented for accurate identification of Curvularia, at the species level. Although the genus is taxonomically diverse, the species associated with cereal crops and weeds are poorly known in Sri Lanka. In this study, symptomatic specimens of cereals and associated weedy grass hosts were collected from selected locations in Sri Lanka. The isolates obtained were initially identified based on microscopic characters. The nuclear ribosomal internal transcribed spacers 1 and 2 with 5.8S region (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and translation elongation factor 1-α (TEF1) loci were sequenced and used in multi-locus phylogenetic analyses. Three novel evolutionary lineages were identified, distinct from all the currently accepted species of Curvularia. To accommodate the novel phylogenetic lineages, three novel species of Curvularia are described, namely Curvularia eleusinicola, C. panici-maximi and C. simmonsii. Morphological descriptions and illustrations are provided for the newly described taxa. In addition, host records are updated for recently introduced C. plantarum and C. pseudointermedia. This study highlights the need for extensive collections and molecular identifications of tropical species of hyphomycetous fungi associated with cereals, fibre crops and weeds in order to support effective disease management and surveillance measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The DNA sequence alignments and phylogenetic trees are available in TreeBase (http://purl.org/phylo/treebase/phylows/study/TB2:S27331). All the DNA sequences are also submitted to GenBank.

Code availability

Not applicable.

References

  • Adikaram NK, Yakandawala DM (2020) A checklist of plant pathogenic fungi and Oomycota in Sri Lanka. Ceylon J Sci 49(1):93–123

    Article  Google Scholar 

  • Alcorn JL (1988) The taxonomy of “Helminthosporium” species. Annu Rev Phytopathol 26(1):37–56

    Article  Google Scholar 

  • Amaradasa BS, Madrid H, Groenewald JZ, Crous PW, Amundsen K (2014) Porocercospora seminalis gen. et comb. nov., the causal organism of buffalo grass false smut. Mycologia 106(1):77–85

    Article  PubMed  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88(3):541–549

    Article  PubMed  Google Scholar 

  • Aslam HMU, Gleason ML, Ikram A, Alam MW, Ahmed MZ, Mansha MZ, Yasin O, Hameed A, Amrao L (2019) First report of brown Leaf spot of rice caused by Curvularia hawaiiensis in Pakistan. Plant Dis 103(10):2679–2680

    Article  Google Scholar 

  • Avinash KS, Ashwini HS, Babu HN, Krishnamurthy YL (2015) Antimicrobial potential of crude extract of Curvularia lunata, an endophytic fungi isolated from Cymbopogon caesius. J Mycol 2015:1–4

    Article  Google Scholar 

  • Balaji V, Arulazhagan P, Ebenezer P (2014) Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oil seeds. J Environ Biol 35(3):521–529

    CAS  PubMed  Google Scholar 

  • Bengyella L, Yekwa LE, Waikhom SD, Nawaz K, Iftikhar S, Motloi TS, Tambo E, Roy P (2017) Upsurge in Curvularia infections and global emerging antifungal drug resistance. Asian J Sci Res 10(4):299–307

    Article  CAS  Google Scholar 

  • Berbee ML, Pirseyedi M, Hubbard S (1999) Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia 91(6):964–977

    Article  CAS  Google Scholar 

  • Bhargava A, Srivastava S (2019) Cereals. In: Participatory Plant Breeding: Concept and Applications. Springer, Singapore, pp 129–173

    Chapter  Google Scholar 

  • Cai L, Udayanga D, Manamgoda DS, Maharachchikumbura SS, McKenzie EH, Guo LD, Liu XZ, Bahkali A, Hyde KD (2011) The need to carry out re-inventory of plant pathogenic fungi. Trop Plant Pathol 36(4):205–213

    Article  Google Scholar 

  • Chang YC, Graf E, Green AM (2019) Invasive Curvularia infection in pediatric patients with hematologic malignancy identified by fungal sequencing. J Pediat Inf Dis Soc 8(1):87–91

    Article  Google Scholar 

  • Chomnunti P, Schoch CL, Aguirre-Hudson B, Ko-Ko TW, Hongsanan S, Jones EG, Kodsueb R, Phookamsak R, Chukeatirote E, Bahkali AH, Hyde KD (2011) Capnodiaceae. Fungal Divers 51(1):103–134

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung WH, Tsukiboshi T (2005) A new species of Curvularia from Japan. Mycotaxon 91:49–54

    Google Scholar 

  • Crous PW, Gams W, Stalpers JA, Robert V, Stegehuis G (2004) MycoBank: an online initiative to launch mycology into the 21st century. Stud Mycol 50(1):19–22

    Google Scholar 

  • da Cunha KC, Sutton DA, Fothergill AW, Cano J, Gené J, Madrid H, De Hoog S, Crous PW, Guarro J (2012) Diversity of Bipolaris species in clinical samples in the United States and their antifungal susceptibility profiles. J Clin Microbiol 50(12):4061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • da Cunha KC, Sutton DA, Fothergill AW, Gené J, Cano J, Madrid H, de Hoog S, Crous PW, Guarro J (2013) In vitro antifungal susceptibility and molecular identity of 99 clinical isolates of the opportunistic fungal genus Curvularia. Diagn Microbiol Infect Dis 76(2):168–174

    Article  PubMed  CAS  Google Scholar 

  • Dai YL, Gan L, Chen FR, Yang XJ (2019) Leaf blight caused by Curvularia coicis on Chinese pearl barley (Coix chinensis) in Fujian Province, China. Can J Plant Pathol 41(2):270–276

    Article  CAS  Google Scholar 

  • Danish Khan I, Makkar A, Malik A, Khan S, Mehdi I, Arif S, Aden D, Somayaji P, Roomi K (2017) Curvularia keratomycosis after cataract surgery. J Arch Military Med 5(2):e57331. https://doi.org/10.5812/jamm.57331

    Article  Google Scholar 

  • Dasanayaka PN (2016) Characterization of some ex situ conserved finger Millet (Eleusine coracana (L.)) Germplasm Accessions in Sri Lanka. Int J Multidiscip Stud 3(2):141–150

    Article  Google Scholar 

  • Dehdari F, Mehrabi-Koushki M, Hayati J (2018) Curvularia shahidchamranensis sp. nov., a crude oil-tolerant fungus. Curr Res Environ Appl Mycol 8(6):572–584

    Article  Google Scholar 

  • Farr DF, Rossman AY (2020) Fungal databases, U.S. National Fungus Collections, ARS, USDA. https://nt.ars-grin.gov/fungaldatabases/. Accessed 15 November 2020

  • Fisher PJ, Petrini O (1992) Fungal saprobes and pathogens as endophytes of rice (Oryza sativa L.). New Phytol 120(1):137–143

    Article  Google Scholar 

  • Gao S, Li Y, Gao J, Suo Y, Fu K, Li Y, Chen J (2014) Genome sequence and virulence variation-related transcriptome profiles of Curvularia lunata, an important maize pathogenic fungus. BMC Genomics 15(1):627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao SG, Ni X, Li YY, Fu KH, Yu CJ, Gao JX, Wang M, Li YQ, Chen J (2017) Sod gene of Curvularia lunata is associated with the virulence in maize leaf. J Integr Agric 16(4):874–883

    Article  CAS  Google Scholar 

  • Heidari K, Mehrabi-Koushki M, Farokhinejad R (2018) Curvularia mosaddeghii sp nov., a novel species from the family Pleosporaceae. Mycosphere 9(4):635–646. https://doi.org/10.5943/mycosphere/9/4/2

    Article  Google Scholar 

  • Hernandez-Restrepo M, Madrid H, Tan YP, Da Cunha KC, Gene J, Guarro J, Crous PW (2018) Multi-locus phylogeny and taxonomy of Exserohilum. Persoonia 41:71–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755

    Article  CAS  PubMed  Google Scholar 

  • Hyde KD, Cai L, Jeewon R (2005) Tropical fungi. Mycol Ser 23:93

    Article  Google Scholar 

  • Hyde KD, Norphanphoun C, Abreu VP, Bazzicalupo A, Chethana KT, Clericuzio M, Dayarathne MC, Dissanayake AJ, Ekanayaka AH, He MQ, Hongsanan S (2017) Fungal diversity notes 603–708: taxonomic and phylogenetic notes on genera and species. Fungal Divers 87(1):1–235. https://doi.org/10.1007/s13225-017-0391-3

    Article  Google Scholar 

  • Ismail AM, Essa TA, Kamel SM, Perrone G (2016) First report of Curvularia spicifera causing leaf spot on tomato (Solanum lycopersicum L.) in Egypt. J Plant Pathol 98(3)

  • Iturrieta-González I, Gené J, Wiederhold N, García D (2020) Three new Curvularia species from clinical and environmental sources. MycoKeys 68:1–21

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain BL (1962) Two new species of Curvularia. Trans Br Mycol Soc 45(4):539–544

    Article  Google Scholar 

  • Janbozorgi S, Mehrabi-Koushki M, Farokhinejad R (2019) New records and hosts of the Curvularia species in Iran. Rostaniha 20(1):1–13. https://doi.org/10.22092/BOTANY.2019.123400.1120

    Article  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khemmuk W, Shivas RG, Henry RJ, Geering AD (2016) Fungi associated with foliar diseases of wild and cultivated rice (Oryza spp.) in northern Queensland. Australas Plant Pathol 45(3):297–308

    Article  CAS  Google Scholar 

  • Kiss N, Homa M, Manikandan P, Mythili A, Krizsán K, Revathi R, Varga M, Papp T, Vágvölgyi C, Kredics L, Kocsubé S (2020) New species of the genus Curvularia: C. tamilnaduensis and C. coimbatorensis from fungal keratitis cases in South India. Pathogens 9(1):9. https://doi.org/10.3390/pathogens9010009

    Article  Google Scholar 

  • Li J, Li M, Gao XX, Fang F (2019) First Report of Curvularia intermedia Causing Leaf Blight on Annual Ryegrass (Lolium multiflorum) in China. Plant Dis 103(3):585. https://doi.org/10.1094/PDIS-06-18-0955-PDN

    Article  Google Scholar 

  • Liang Y, Ran SF, Bhat J, Hyde KD, Wang Y, Zhao DG (2018) Curvularia microspora sp. nov. associated with leaf diseases of Hippeastrum striatum in China. MycoKeys 29:49–61. https://doi.org/10.3897/mycokeys.29.21122

    Article  Google Scholar 

  • Liu HF, Zha QC, Huang TC, Huang CX, Pei DF, Liu QK, Deng JX (2019) Curvularia curculiginis causes leaf spot and blight on Curculigo capitulata in China. Aust Plant Dis Notes 14(1):15

    Article  Google Scholar 

  • López-Giráldez F, Townsend JP (2011) PhyDesign: an online application for profiling phylogenetic informativeness. BMC Evol Biol 11(1):152

    Article  PubMed  PubMed Central  Google Scholar 

  • Madrid H, Da Cunha KC, Gené J, Dijksterhuis J, Cano J, Sutton DA, Guarro J, Crous PW (2014) Novel Curvularia species from clinical specimens. Persoonia 33:48–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malkanthi SHP, Sandareka UG, Wijerathne AW, Sivashankar P (2019) Banning of glyphosate and its impact on paddy cultivation: a study in Ratnapura District in Sri Lanka. J Agric Sci Sri Lanka 14(2):129–144

    Google Scholar 

  • Manamgoda DS, Cai L, Bahkali AH, Chukeatirote E, Hyde KD (2011) Cochliobolus: an overview and current status of species. Fungal Divers 51(1):3–42. https://doi.org/10.1007/s13225-011-0139-4

    Article  Google Scholar 

  • Manamgoda DS, Cai L, McKenzie EHC, Chukeatirote E, Hyde KD (2012a) Two new Curvularia species from northern Thailand. Sydowia 64(2):255–266

    Google Scholar 

  • Manamgoda DS, Cai L, McKenzie EH, Crous PW, Madrid H, Chukeatirote E, Shivas RG, Tan YP, Hyde KD (2012b) A phylogenetic and taxonomic re-evaluation of the Bipolaris-Cochliobolus-Curvularia complex. Fungal Divers 56(1):131–144. https://doi.org/10.1007/s13225-012-0189-2

    Article  Google Scholar 

  • Manamgoda DS, Rossman AY, Castlebury LA, Crous PW, Madrid H, Chukeatirote E, Hyde KD (2014) The genus Bipolaris. Stud Mycol 79:221–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manamgoda DS, Rossman AY, Castlebury LA, Chukeatirote E, Hyde KD (2015) A taxonomic and phylogenetic re-appraisal of the genus Curvularia (Pleosporaceae): human and plant pathogens. Phytotaxa 212(3):175–198. https://doi.org/10.11646/phytotaxa.212.3.1

    Article  Google Scholar 

  • Marin-Felix Y, Groenewald JZ, Cai L, Chen Q, Marincowitz S, Barnes I, Bensch K, Braun U, Camporesi E, Damm U, De Beer ZW (2017a) Genera of phytopathogenic fungi: GOPHY 1. Stud Mycol 86:99–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin-Felix Y, Senwanna C, Cheewangkoon R, Crous PW (2017b) New species and records of Bipolaris and Curvularia from Thailand. Mycosphere 8(9):1556–1574. https://doi.org/10.5943/mycosphere/8/9/11

    Article  Google Scholar 

  • Marin-Felix Y, Hernández-Restrepo M, Crous PW (2020) Multi-locus phylogeny of the genus Curvularia and description of ten new species. Mycol Prog 19:559–588

    Article  Google Scholar 

  • Mehrabi-Koushki M, Pooladi P, Eisvand P, Babaahmadi G (2018) Curvularia ahvazensis and C. rouhanii spp. nov. from Iran. Mycosphere 9(6):1173–1186

    Article  Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: 2010 gateway computing environments workshop (GCE) 2010 Nov 14. New Orleans, Louisiana, pp 1–8

    Google Scholar 

  • Nemati Z, Mostowfizadeh-Ghalamfarsa R (2016) Identification of some grass-associated species of Bipolaris, Curvularia and Exserohilum in selected regions of Iran. Rostaniha 17(1):40–50. https://doi.org/10.22092/BOTANY.2016.107002

    Article  Google Scholar 

  • Nilsson RH, Hyde KD, Pawłowska J, Ryberg M, Tedersoo L, Aas AB, Alias SA, Alves A, Anderson CL, Antonelli A, Arnold AE (2014) Improving ITS sequence data for identification of plant pathogenic fungi. Fungal Divers 67(1):11–19. https://doi.org/10.1007/s13225-014-0291-8

    Article  Google Scholar 

  • Nwachukwu CU, Ngwoke KG, Eze PM, Eboka CJ, Okoye FBC (2018) Secondary metabolites from Curvularia sp, an endophytic fungus isolated from the leaves of Picralima nitida Durand and Hook (Apocynaceae). Trop J Nat Product Res 2(5):209–213

    Article  CAS  Google Scholar 

  • Nylander JAA (2004) MrModeltest v2 (Program distributed by the author.) Evolutionary Biology Centre. Uppsala University, Sweden: http://www.ebc.uu.se/systzoo/staff/nylander.html. Accessed 15 Sep 2020

  • Rai M, Agarkar G (2016) Plant–fungal interactions: what triggers the fungi to switch among lifestyles? Crit Rev Microbiol 42(3):428–438

    Article  CAS  PubMed  Google Scholar 

  • Ramalingmam P, Muthukrishnan S, Thangaraj P (2015) Biosynthesis of silver nanoparticles using an endophytic fungus, Curvularia lunata and its antimicrobial potential. J Nanosci Nanoeng 1(4):241–247

    Google Scholar 

  • Rambaut A, Drummond A (2008) FigTree: tree figure drawing tool, version 1.2.2. Institute of Evolutionary Biology, University of Edinburgh, UK

  • Rayner RW (1970) A mycological colour chart. Commonwealth Mycological Institute, UK

  • Raza M, Zhang ZF, Hyde KD, Diao YZ, Cai L (2019) Culturable plant pathogenic fungi associated with sugarcane in southern China. Fungal Divers 99(1):1–104. https://doi.org/10.1007/s13225-019-00434-5

    Article  Google Scholar 

  • Rehner SA, Buckley E (2005) A Beauveria phylogeny inferred from nuclear ITS and EF1α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97(1):84–98

    CAS  PubMed  Google Scholar 

  • Richardson MJ (1990) An annotated list of seed-borne diseases. International Seed Testing Association, Zurich

    Google Scholar 

  • Safi A, Mehrabi-Koushki M, Farokhinejad R (2020) Amesia khuzestanica and Curvularia iranica spp. nov. from Iran. Mycol Prog 19(9):935–945. https://doi.org/10.1007/s11557-020-01612-5

    Article  Google Scholar 

  • Salim N, Mahindapala R (1981) Leaf blight disease of coconut 2. Studies on Curvularia sp. Ceylon Coconut Q 32:96–104

    Google Scholar 

  • Santos PRRD, Leão EU, Aguiar RWDS, Melo MPD, Santos GRD (2018) Morphological and molecular characterization of Curvularia lunata pathogenic to andropogon grass. Bragantia 77(2):326–332. https://doi.org/10.1590/1678-4499.2017258

    Article  Google Scholar 

  • Serra JL, Moura FG, de Melo Pereira GV, Soccol CR, Rogez H, Darnet S (2019) Determination of the microbial community in Amazonian cocoa bean fermentation by Illumina-based metagenomic sequencing. LWT 106:229–239. https://doi.org/10.1016/j.lwt.2019.02.038

    Article  CAS  Google Scholar 

  • Sharma S, Mittal P, Rai M (2013) Bioremediation and decolorization of distillery effluent by Aspergillus niger and a novel fungal strain Curvularia andropogonis. Trends Biosci 6(6):844–849

    Google Scholar 

  • Simões MF, Pereira L, Santos C, Lima N (2013) Polyphasic identification and preservation of fungal diversity: concepts and applications. In: Management of Microbial Resources in the Environment. Springer, Dordrecht, pp 91–117. https://doi.org/10.1007/978-94-007-5931-2_5

    Chapter  Google Scholar 

  • Sivanesan A (1987) Graminicolous species of Bipolaris, Curvularia, Drechslera, Exserohilum and their teleomorphs. Mycol Pap 158:1–261

    Google Scholar 

  • Song J, Liang JF, Mehrabi-Koushki M, Krisai-Greilhuber I, Ali B, Bhatt VK, Cerna-Mendoza A, Chen B, Chen ZX, Chu HL, Corazon-Guivin MA (2019) Fungal systematics and evolution: FUSE 5. Sydowia 71:141

    PubMed  PubMed Central  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771

    Article  PubMed  Google Scholar 

  • Tan YP, Madrid H, Crous PW, Shivas RG (2014) Johnalcornia gen. et. comb. nov., and nine new combinations in Curvularia based on molecular phylogenetic analysis. Australas Plant Pathol 43(6):589–603. https://doi.org/10.1007/s13313-014-0315-6

    Article  Google Scholar 

  • Tan YP, Crous PW, Shivas RG (2016) Eight novel Bipolaris species identified from John L. Alcorn’s collections at the Queensland Plant Pathology Herbarium (BRIP). Mycol Prog 15(10–11):1203–1214. https://doi.org/10.1007/s11557-016-1240-6

    Article  Google Scholar 

  • Tan YP, Crous PW, Shivas RG (2018) Cryptic species of Curvularia in the culture collection of the Queensland Plant Pathology Herbarium. MycoKeys 35:1–25

    Article  Google Scholar 

  • Tibpromma S, Hyde KD, McKenzie EH, Bhat DJ, Phillips AJ, Wanasinghe DN, Samarakoon MC, Jayawardena RS, Dissanayake AJ, Tennakoon DS, Doilom M (2018) Fungal diversity notes 840–928: micro-fungi associated with Pandanaceae. Fungal Divers 93(1):1–160. https://doi.org/10.1007/s13225-018-0408-6

    Article  Google Scholar 

  • Tomaso-Peterson M, Jo YK, Vines PL, Hoffmann FG (2016) Curvularia malina sp. nov. incites a new disease of warm-season turfgrasses in the southeastern United States. Mycologia 108(5):915–924

    Article  PubMed  Google Scholar 

  • Tóth EJ, Varga M, Takó M, Homa M, Jáger O, Hermesz E, Orvos H, Nagy G, Vágvölgyi C, Papp T (2020) Response of human neutrophil granulocytes to the hyphae of the emerging fungal pathogen Curvularia lunata. Pathogens 9(3):235. https://doi.org/10.3390/pathogens9030235

    Article  CAS  PubMed Central  Google Scholar 

  • Udayanga D (2019) The promise of molecular identification in plant biosecurity, Vidyodaya Current Journal 1 (special volume) 60th Anniversary. 103–113

  • Udayanga D, Castlebury LA, Rossman AY, Chukeatirote E, Hyde KD (2014) Insights into the genus Diaporthe: phylogenetic species delimitation in the D. eres species complex. Fungal Divers 67(1):203–229. https://doi.org/10.1007/s13225-014-0297-2

    Article  Google Scholar 

  • Udayanga D, Miriyagalla SD, Herath IS, Castlebury LA, Ferdinandez HS, Manamgoda DS (2020) Foliar pathogenic fungi: growing threats to global food security and ecosystem health. Ceylon J Sci 49(5):337–353. https://doi.org/10.4038/cjs.v49i5.7801

    Article  Google Scholar 

  • Vu D, Groenewald M, De Vries M, Gehrmann T, Stielow B, Eberhardt U, Al-Hatmi A, Groenewald JZ, Cardinali G, Houbraken J, Boekhout T (2019) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud Mycol 92:135–154

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee SJWT, Taylor JL (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Zhang J, Li M (2009) A new species of Bipolaris from the halophyte Sesuvium portulacastrum in Guangdong Province, China. Mycotaxon 109:289–300. https://doi.org/10.5248/109.289

    Article  Google Scholar 

  • Zhang M, Zhang T (2004) Taxonomic studies of Curvularia from China IA new species and a new Chinese record on Gramineae. Mycosystema 23(3):328–330

    Google Scholar 

  • Zhang M, Wu H, Pei Z, Zhang T (2007) A new species and a new variety of Curvularia in China. Southwest China. J Agric Sci 20(5):1144–1145

    Google Scholar 

  • Zhang Q, Yang ZF, Cheng W, Wijayawardene NN, Hyde KD, Chen Z, Wang Y (2020) Diseases of Cymbopogon citratus (Poaceae) in China: Curvularia nanningensis sp. nov. MycoKeys 634. https://doi.org/10.3897/mycokeys.63.49264

Download references

Acknowledgements

The authors gratefully acknowledge the University of Sri Jayewardenepura for Research Grant ASP/01/RE/SCI/2018/036 to work on the dematiaceous hyphomycetous fungi of Sri Lanka. The Mycological Society of America is acknowledged for the Emory Simmons Research Award (2018) to DSM. The Department of Botany, Faculty of Applied Sciences and Department of Biosystems Technology, Faculty of Technology are thanked for laboratory facilities.

Funding

This project is funded by the University of Sri Jayewardenepura for Research Grant ASP/01/RE/SCI/2018/036. Emory Simmons Research Award (2018) to DSM by Mycological Society of America and funding from USDA-ARS National Program 303, Project 8042-22000-298-00D also contributed to this work.

Author information

Authors and Affiliations

Authors

Contributions

Dimuthu S. Manamgoda, Dhanushka Udayanga, Nelum Deshappriya, Mayuri S. Munasinghe and Lisa A. Castlebury contributed to the study conception and design. Material preparation, data collection and analysis were performed by Himashi S. Ferdinandez, Dimuthu S. Manamgoda and Dhanushka Udayanga. The manuscript was written by Himashi S. Ferdinandez, Dimuthu S. Manamgoda, Dhanushka Udayanga, Nelum Deshappriya, Mayuri S. Munasinghe and Lisa A. Castlebury. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dimuthu S. Manamgoda.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Disclaimer

The use of trade, firm or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the United States Department of Agriculture or any other affiliated institute of the authors. The USDA is an equal opportunity employer.

Additional information

Section Editor: Marc Stadler

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferdinandez, H.S., Manamgoda, D.S., Udayanga, D. et al. Molecular phylogeny and morphology reveal three novel species of Curvularia (Pleosporales, Pleosporaceae) associated with cereal crops and weedy grass hosts. Mycol Progress 20, 431–451 (2021). https://doi.org/10.1007/s11557-021-01681-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-021-01681-0

Keywords

Navigation