Skip to main content
Log in

The biosynthesis of gibberellic acids by the transformants of orchid-associated Fusarium oxysporum

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

The genus Fusarium, including multiple strains in the Gibberella fujikuroi species complex (GFC), is well known for its production of diverse secondary metabolites. F. fujikuroi, associated with the “bakanae” disease of rice, is an active producer of gibberellins (GAs), a wide class of plant hormones. In addition to some members of the GFC, the GA biosynthetic gene cluster, or parts of it, occurs also in some isolates of the closely related species of F. oxysporum, which does not belong to the GFC. However, production of GAs has never been observed in any F. oxysporum strain. In this study, we report on the GA biosynthetic activity in an orchid-associated F. oxysporum strain by transforming a cosmid with the entire F. fujikuroi GA gene cluster. Southern and Northern blot analyses confirmed not only the integration of the entire gene cluster into the genome but also the active expression of the seven GA biosynthetic genes under nitrogen-limiting conditions. The transformants produced GAs at levels similar to those of F. fujikuroi. These data show that the regulatory network for expression of GA genes is fully active in the F. oxysporum background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul S, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bacon CW, Porter JK, Norred WP, Leslie JF (1996) Production of fusaric acid by Fusarium species. Appl Environ Microbiol 62:4039–4043

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boiero L, Perrig D, Masciarelli O et al (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880

    Article  CAS  PubMed  Google Scholar 

  • Bömke C, Tudzynski B (2009) Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochem 70:1876–1893

    Article  Google Scholar 

  • Bömke C, Rojas MC, Hedden P, Tudzynski B (2008) Loss of gibberellin production in Fusarium verticillioides (Gibberella fujikuroi MP-A) is due to a deletion in the gibberellic acid gene cluster. Appl Environ Microbiol 74:7790–7801

    Article  PubMed Central  PubMed  Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. PNAS USA 81:1991–1995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cohen R, Horev C, Burger Y, Shriber S, Hershenhorn J, Katan J, Edelstein M (2002) Horticultural and pathological aspects of Fusarium wilt management using grafted melons. Hort Sci 37:1069–1073

    Google Scholar 

  • Davies PJ (1995) Plant Hormones: Physiology, Biochemistry, and Molecular Biology. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Depuydt S, Hardtke CS (2011) Hormone signalling crosstalk in plant growth regulation. Curr Biol 21:R365–R373

    Article  CAS  PubMed  Google Scholar 

  • Desjardins AE, Plattner RD (2000) Fumonisin B-1-nonproducing strains of Fusarium verticillioides cause maize (Zea mays) ear infection and ear rot. J Agr Food Chem 48:5773–5780

    Article  CAS  Google Scholar 

  • Forsyth LM, Smith LJ, Aitken EA (2006) Identification and characterization of non-pathogenic Fusarium oxysporum capable of increasing and decreasing Fusarium wilt severity. Mycol Res 110:929–935

    Article  PubMed  Google Scholar 

  • Geissman TA, Verbiscar AJ, Phinney BO, Cragg G (1966) Studies on the biosynthesis of gibberellins from (−)-kaurenoic acid in cultures of Gibberella fujikuroi. Phytochem 5:933–947

    Article  CAS  Google Scholar 

  • Hasan M, Bano A, Hassan SG et al (2014) Enhancement of rice growth and production of growth-promoting phytohormones by inoculation with Rhizobium and other rhizobacteria. WASJ 31:1734–1743

    Google Scholar 

  • Hedden P, Phillips AL, Rojas MC, Carrera E, Tudzynski B (2002) Gibberellin biosynthesis in plants and fungi: a case of convergent evolution? J Plant Growth Regul 20:317–331

    Article  Google Scholar 

  • Hwang IS, Kang WR, Hwang DJ, Bae SC, Yun SH, Ahn IP (2013) Evaluation of bakanae disease progression caused by Fusarium fujikuroi in Oryza sativa L. J Microbiol 51:858–865

    Article  CAS  PubMed  Google Scholar 

  • Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the Sinorhizobium–Medicago model. Nat Rev Microbiol 5:619–633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kang SM, Joo GJ, Hamayun M et al (2009) Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol Lett 31:277–281

    Article  CAS  PubMed  Google Scholar 

  • Khaldi N, Collemare J, Lebrun MH, Wolfe KH (2008) Evidence for horizontal transfer of a secondary metabolite gene cluster between fungi. Genome Biol 9:R18

    Article  PubMed Central  PubMed  Google Scholar 

  • Khan AL, Waqas M, Kang SM et al (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52:689–695

    Article  CAS  PubMed  Google Scholar 

  • Kvas M, Marasas WFO, Wingfield BD, Wingfield MJ, Steenkamp ET (2009) Diversity and evolution of Fusarium species in the Gibberella fujikuroi complex. Fungal Divers 34:1–21

    Google Scholar 

  • López-Berges MS, Rispall N, Prados-Rosales RC, DiPietro A (2010) A nitrogen response pathway regulates virulence functions in Fusarium oxysporum via the protein kinase tor and the bZIP protein MeaB. Plant Cell 22:2459–2475

    Article  PubMed Central  PubMed  Google Scholar 

  • López-Berges MS, Schäfer K, Hera C, DiPietro A (2014) Combinatorial function of velvet and AreA in transcriptional regulation of nitrate utilization and secondary metabolism. Fungal Genet Biol 62:78–84

    Article  PubMed  Google Scholar 

  • Malonek S, Bömke C, Bornberg-Bauer E et al (2005a) Distribution of gibberellin biosynthetic genes and gibberellin production in the Gibberella fujikuroi species complex. Phytochem 66:1296–1311

    Article  CAS  Google Scholar 

  • Malonek S, Rojas MC, Hedden P, Hopkins P, Tudzynski B (2005b) Restoration of gibberellin production in Fusarium proliferatum by functional complementation of enzymatic blocks. Appl Environ Microbiol 71:6014–6025

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Michielse CB, Pfannmueller A, Macios et al (2014) The interplay between the GATA transcription factors AreA, the global nitrogen regulator and AreB in Fusarium fujikuroi. Mol Microbiol 91:472–493

    Article  CAS  PubMed  Google Scholar 

  • Mihlan M, Homann V, Liu TWD, Tudzynski B (2003) AREA directly mediates nitrogen regulation of gibberellin biosynthesis in Gibberella fujikuroi, but its activity is not affected by NMR. Mol Microbiol 47:975–991

    Article  CAS  PubMed  Google Scholar 

  • Pinaria AG, Liew ECY, Burgess LW (2010) Fusarium species associated with vanilla stem rot in Indonesia. Australas Plant Pathol 39:176–183

    Article  Google Scholar 

  • Pontecorvo GV, Poper JA, Hemmonns LM, MacDonald KD, Buften AWJ (1953) The genetics of Aspergillus nidulans. Adv Genet 141:141–238

    Article  Google Scholar 

  • Rachev RCh, Bojkova SV, Pavlova-Rouseva R, Gancheva VK, Dimitrova MP (1988) Separation of gibberellins by thin-layer chromatography and gas chromatography, and possibilities for their quantitative analysis. J Chromatogr 437:287–293

  • Rim S-O, Lee J-H, Choi W-Y et al (2005) Fusarium proliferatum KGL0401 as a new gibberellin-producing fungus. J Microbiol Biotechnol 15:809–814

    CAS  Google Scholar 

  • Rim S-O, You Y-H, Yoon H et al (2013) Characterization of gibberellin biosynthetic gene cluster from Fusarium proliferatum. J Microbiol Biotechnol 23:623–629

    Article  CAS  PubMed  Google Scholar 

  • Rojas MC, Hedden P, Gaskin P, Tudzynski B (2001) The P450-1 gene of Gibberella fujikuroi encodes a multifunctional enzyme in gibberellin biosynthesis. PNAS USA 98:5828–5834

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor, Cold Spring Harbor Laboratory Press, N.Y

    Google Scholar 

  • Slot JC, Rokas A (2011) Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi. Curr Biol 21:134–139

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. Microbiol Rev 31:425–448

    CAS  Google Scholar 

  • Teichert S, Rutherford JC, Wottawa M, Heitman J, Tudzynski B (2008) The impact of the ammonium permeases MepA, MepB, and MepC on nitrogen-regulated secondary metabolism in Fusarium fujikuroi. Eukaryot Cell 7:187–201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Troncoso C, González X, Bömke et al (2010) Gibberellin biosynthesis and gibberellin oxidase activities in Fusarium sacchari, Fusarium konzum and Fusarium subglutinans strains. Phytochem 71:1322–1331

    Article  CAS  Google Scholar 

  • Tsavkelova EA, Alexandrova AV, Cherdyntseva TA, Kolomeitseva GL, Netrusov AI (2003) Fungi associated with orchid roots in greenhouse conditions. Mycol Phytopathol (in Russian) 37:57–63

    Google Scholar 

  • Tsavkelova EA, Klimova YS, Cherdyntseva TA, Netrusov AI (2006) Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol 42:133–143

    CAS  Google Scholar 

  • Tsavkelova EA, Bömke C, Netrusov AI, Weiner J, Tudzynski B (2008) Production of gibberellic acids by an orchid-associated Fusarium proliferatum strain. Fungal Genet Biol 45:139–1403

    Article  Google Scholar 

  • Tudzynski B (2005) Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology. Appl Microbiol Biotechnol 66:597–611

    Article  CAS  PubMed  Google Scholar 

  • Tudzynski B (2014) Nitrogen regulation of fungal secondary metabolism in fungi. Front Microbiol 5:656. doi:10.3389/fmicb.2014.00656

    Article  PubMed Central  PubMed  Google Scholar 

  • Tudzynski B, Sharon A (2002) Biosynthesis, biological role and application of fungal hormones. In: Osiewacz HD (ed) The Mycota X: Industrial Applications. Springer, Berlin-Heidelberg, pp 183–211

    Chapter  Google Scholar 

  • Tudzynski P, Tudzynski B (1996) Genetics of phytopathogenic fungi. Prog Bot 57:235–252

    Google Scholar 

  • Tudzynski B, Mihlan M, Rojas MC et al (2003) Characterization of the final two genes of the gibberellin biosynthesis gene cluster of Gibberella fujikuroi: des and P450-3 encode GA4 desaturase and the 13-hydroxylase, respectively. J Biol Chem 278:28635–28643

    Article  CAS  PubMed  Google Scholar 

  • Vujanovic V, St-Arnaud M, Barabé D, Thibeault G (2000) Viability testing of orchid seed and the promotion of coloration and germination. Ann Bot London 86:79–86

    Article  Google Scholar 

  • Wiemann P, Sieber CM, von Bargen KW et al (2013) Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog 9:e1003475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu J, Qian J, Zheng S (2002) A preliminary study on ingredient of secretion from fungi of orchid mycorrhizal. Ying Yong Sheng Tai Xue Bao 13:845–848

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author is grateful to Prof. Dr. Bettina Tudzynski (University of Münster, Germany) for supervising the study. I cordially acknowledge Dr. Christiane Bömke and Sabine Huber for technical assistance, and thank the Moscow State University-DAAD “Vladimir Vernadsky” program [fellowship number A/13/80977] for supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena A. Tsavkelova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsavkelova, E.A. The biosynthesis of gibberellic acids by the transformants of orchid-associated Fusarium oxysporum . Mycol Progress 15, 12 (2016). https://doi.org/10.1007/s11557-015-1156-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11557-015-1156-6

Keywords

Navigation