Skip to main content

Biosynthesis, Biological Role and Application of Fungal Phytohormones

  • Chapter
Industrial Applications

Part of the book series: The Mycota ((MYCOTA,volume 10))

Abstract

Phytohormones and their crucial role in the elicitation of plant physiological processes have been known since 1937, when Went and Thimann published their classic book Phytohormones (cited in Kende and Zeevaart 1997). At that time, the term phytohormones was synonymous with auxin. Later on, gibberellins (GAs), ethylene, cytokinins and abscisic acid (ABA) together with auxins were regarded as the “classical five” phytohormones. Over the years, new biologically active compounds with hormonal functions have been found, such as jasmonic acid, brassinolides and oligosaccharides (Creelman and Mullet 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel S, Theologis A (1996) Early genes and auxin action. Plant Physiol 111: 9–17

    CAS  Google Scholar 

  • Achilea O. Chalutz E, Fuchs Y, Rot I (1985a) Ethylene and related physiological changes in Penicillium digitaturninfected grapefruit (Citrus paradisi). Physiol Plant Pathol 26: 125–134

    Google Scholar 

  • Achilea O, Fuchs Y. Chalutz E, Rot I (1985b) The contribution of host and pathogen to ethylene biosynthesis in Penicillium digitatum-infected citrus fruit. Physiol Plant Pathol 27: 55–63

    CAS  Google Scholar 

  • Aloni R. Wolf A, Feigenbaum P, Avni A, Klee H (1998) The never ripe mutant provides evidence that tumor-induced ethylene controls the morphogenesis of Agrobacterium tomefaciens-induced crown galls on tomato stems. Plant Physiol 117: 841–849

    Google Scholar 

  • Amagai A, Maeda Y (1992) The ethylene action in the development of cellular slime molds: an analogy to higher plants. Protoplasma 167: 159–168

    CAS  Google Scholar 

  • Andreoli C, Maguire JD (1995) Preliminary investigations on the viability of the use of abscisic acid (ABA) in crucifer seed health test for detecting Phoma lingam. Pesq Agropec Bras, Brasilia 30: 291–294

    Google Scholar 

  • Arteca R (ed) (1996) Plant growth substances: principles and applications. Chapman and Hall, New York

    Google Scholar 

  • Assante WB, Merlini L, Nahimi G (1977) (+) Abscisic acid, a metabolite of the fungus Cercospora rosicola. Experientia 33:1556–1557

    Google Scholar 

  • Avalos J, Sanchez-Fernandez R, Fernandez-Marten R, Candau R (1997) Regulation of gibberellin production in the fungus Gibberella fujikuroi. Rec Res Dev Plant Physiol 1: 105–115

    Google Scholar 

  • Ayub R, Guis M, Ben Amor M, Gillot L, Roustan JP, Latche A, Bouzâyen M, Pech JC (1996) Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nat Biotechnol 14: 862–866

    CAS  Google Scholar 

  • Bandurski RS, Cohen JD, Slovin JP, Reinecke DM (1995) Auxin biosynthesis and metabolism. In: Davies PJ (ed) Plant hormones. Kluwer, Dordrecht, pp 39–65

    Google Scholar 

  • Barna B, Adam AL, Kiraly Z (1997) Increased levels of cytokinin induce tolerance to necrotic diseases and various oxidative stress-causing agents in plants. Phyton Ann Rei Bolan 37: 25–29

    CAS  Google Scholar 

  • Bartel B (1997) Auxin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 48: 51–66

    CAS  Google Scholar 

  • Basse CW, Lottspeich F, Steglich W. Kahmann R (1996) Two potential indole-3-acetaldehyde dehydrogenases in the phytopathogenic fungus Ustilago rnaydis. Eur J Biochem 242: 648–656

    CAS  Google Scholar 

  • Bearder JPR (1983) In vitro diterpenoid biosynthesis in Gibberella,fujikuroi. The pathway after ent-kaurene. In: Crozier A (cd) The biochemistry and physiology of gibberellin, vol 1. Praeger, New York, pp 251–388

    Google Scholar 

  • Bettini P, Cosi E, Pellegrini MG, Turbanti L, Vendramin GG, Buiatti M (1998) Modification of competence for in vitro response to Fusarium oxysporum in tomato cells. III. PR-protein gene expression and ethylene evolution in tomato cell lines transgenic for phytohormone related bacterial genes. Thcor Appt Genet 97: 575–583

    CAS  Google Scholar 

  • Biale JB (1940) Effect of emanation from several species of fungi on respiration and colour development of citrus fruits. Science 91: 458–459

    CAS  Google Scholar 

  • Bolitho KM. Lay-Yee M. Knighton ML, Ross GS (1997) Antisense apple ACC oxidase RNA reduced ethylene production in transgenic tomato fruit. Plant Sci 122: 91–99

    Google Scholar 

  • Brown W (1922) Studies in the physiology of parasitism. Ann Bot 36: 285–300

    CAS  Google Scholar 

  • Bruckner B, Blechschmidt D (1991) The gibberellin fer- mentation. Crit Rev Biotechnol 11: 1163–1192

    Google Scholar 

  • Burbidge A, Grieve T, Terry C, Corlett J, Thompson A, Taylor 1. (1997) Structure and expression of a cDNA encoding zeaxanthin epoxidase, isolated from a wiltrelated tomato (Lycopersicon esculenturn Mill.) library. J Exp Bot 48: 1749–1750

    CAS  Google Scholar 

  • Campuzano V, Galland P, Alvarez ML Eslava AP (1996) Blue-light receptor requirement for gravitropism, autochemotropism and ethylene response in Phycomyces. Photochem Photobiol 63: 686–694

    CAS  Google Scholar 

  • Chalutz E, Kapulnik E, Chet I (1983) Fermentative production of ethylene by Penicillium digitatum from citrus fruit peel. Eur J Appl Microbiol Biotechnol 18: 293–297

    CAS  Google Scholar 

  • Chandler PM, Robertson M (1994) Gene expression regulated by abscisic acid and its relation to stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 45: 113–141

    CAS  Google Scholar 

  • Chang C, Shockey JA (1999) The ethylene response pathway: signal perception to gene regulation. Curr Opin Plant Biol 2: 352–358

    CAS  Google Scholar 

  • Chapman DJ, Regan MA (1980) Evolution of biochemical pathway: evidence from comparative biochemistry. Annu Rev Plant Physiol 31: 639–678

    CAS  Google Scholar 

  • Chen C-M (1997) Cytokinin biosynthesis and interconversion. Physiol Plant 101: 665–673

    CAS  Google Scholar 

  • Chou TW, Yang SF (1973) The biogenesis of ethylene in Penicillium digitatum. Arch Biochem Biophys 157: 7382

    Google Scholar 

  • Cihangir N, Aksoz N (1993) Production of gibberellic acid by Aspergillus niger using some food industry wastes. Acta Microbiol Pol 45: 291–297

    Google Scholar 

  • Coleman LW, Hodges CF (1990) Growth and sporulation of Bipolaris sorokiniana in response to methionine and ethylene. Mycol Res 94: 1013–1016

    CAS  Google Scholar 

  • Coolbaugh RC, Al-Nimri LF, Nester JE (1985) Evidence for gibberellins in culture filtrates of Cercospora rosicola. 12th Int Conf Plant Growth Substances, Heidelberg, Abstr 12

    Google Scholar 

  • Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant associated bacteria. Crit Rev Microbiol 21: 1–18

    Google Scholar 

  • Creelman RA, Mullet JE (1997) Oligosaccharins, brassinolides, and jasmonates: nontraditional regulators of plant growth. development, and gene expression. Plant Cell 9: 1211–1223

    CAS  Google Scholar 

  • Crocoll C, Kettner J, Dörffling K (1991) Abscisic acid in saprophytic and parasitic species of fungi. Phytochemistry 30: 1059–1060

    CAS  Google Scholar 

  • Dahiya JS,Tewari JP (1991) Plant growth factors produced by the fungus Alternaria brassicae. Phytochemistry 30: 2825–2828

    Google Scholar 

  • Davies PJ (1995) The hormones: their nature, occurrence, and function. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology. Kluwer, Dordrecht, pp 1–13

    Google Scholar 

  • Daykin A, Scott IM, Francis D, Causton DR (1997) Effects of gibberellin on the cellular dynamics of dwarf pea internode development. Planta 203: 526–535

    CAS  Google Scholar 

  • Dolk HE, Thimann KV (1932) Studies on the growth hormone of plants. Proc Natl Acad Sci USA 18: 30–36

    CAS  Google Scholar 

  • Dörffling K, Petersen W (1984) Abscisic acid in phytopathogenic fungi of the genera Botrytis, Ceratocystis, Fusarium and Rhizoctonia. Z Naturforsch 39c: 683–684

    Google Scholar 

  • Dwyer PJ, Bannister P, Jameson PE (1995) Effects of three plant growth regulators on growth, morphology, water relations, and frost resistance in lemonwood (Pit- tosporum eugenioides A. Cunn). N Z J Bot 33: 415–424

    Google Scholar 

  • Eckert JW, Ratnayake M (1994) Role of volatile com- pounds from wounded oranges in induction of germination of Penicillium digitatum conidia. Phytopathology 84: 746–750

    CAS  Google Scholar 

  • Ehmann A (1977) The Van Urk-Salkowski Reagent–a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. J Chromatogr 132: 267–276

    CAS  Google Scholar 

  • Ek M, Ljunquist PO, Stenstrom E (1983) lndole-3-acetic acid production by mycorrhizal fungi determined by gas chromatography-mass spectrometry. New Phytol 94:401–407

    Google Scholar 

  • Elad Y, Vensen K (1995) Physiological aspects of resistance to Botrytis cinerea. Phytopathology 85: 637–645

    Google Scholar 

  • El-Kazzaz MK, Sommer NF, Kader AA (1983) Ethylene effects on in vitro and in vivo growth of certain postharvest fruit-infecting fungi. Phytopathology 73: 998–1001

    CAS  Google Scholar 

  • EI-Sharouny HM (1984) Screening of ethylene-producing root-infecting fungi in Egyptian soil. Mycopathologia 85: 13–15

    Google Scholar 

  • Evans ML (1984) Function of hormones at the cellular level of organization. In: Scott TK (ed) N. S. 10 encyclopedia of plant physiology. Springer. Berlin Heidelberg New York, p 23

    Google Scholar 

  • Finkelstein RR, Zeevaart JAD (1994) Gibberellin and abscisic acid biosynthesis and response. In: Meyerowitz EM, Somerville CR (eds) Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 523–553

    Google Scholar 

  • Flaishman MA, Kolattukudy PE (1994) Timing of fungal invasion using host’s ripening hormone as a signal. Proc Natl Acad Sci USA 91: 6579–6583

    CAS  Google Scholar 

  • Flores Nimedez AA, Dörffling K, Vergara BS (1995) Amelioration of drought-induced transplanting shock in rice by an abscisic analog in combination with the growth retardant tetcyclacis. J Agron Crop Sei 174: 145–150

    Google Scholar 

  • Fukuda H, Fujii T, Ogawa T (1984) Microbial production of C sub(2)-hydrocarbons, ethane. ethylene an acetylene. Agric Biol Chem 48: 1363–1365

    CAS  Google Scholar 

  • Fukuda H, Fijii T, Ogawa T (1986) Preparation of cell free ethylene-forming system from Penecillium digitatum. Agric Biol Chem 50: 977–981

    CAS  Google Scholar 

  • Fukuda H, Kitajima H, Fujii T, Tazaki M, Ogawa T (1989) Purification and some properties of a novel ethylene forming enzyme produced by Penicillium digitatum. FEMS Microbiol Lett 59: 1–5

    CAS  Google Scholar 

  • Fukuda H, Ogawa ‘I’, Fazaki M, Nagahama K, Fuj ii T, Tanase S, Morino Y (1992a) Two reactions are simultaneously catalyzed by a single enzyme: the arginine-dependent simultaneous formation of two products. ethylene and succinate, from 2-oxoglutarate by an enzyme from Pseudomonas syringae. Biochem Biophys Res Commun 188: 483–489

    CAS  Google Scholar 

  • Fukuda H, Ogawa T, Ishihara K, Fujii T, Nagahama K, Omata T. Inoue T, Tanase S, Morino Y (1992b) Molecuar cloning in Eschericia colt, expression and nucleotide sequence of the gene for the ethylene forming enzyme of Pseudomonas synringae pv. phaseolicola PK2. Biochem Biophys Res Commun 188: 826–832

    CAS  Google Scholar 

  • Fukuda H, Kitajima H, Tanasa S (1993) Ethylene production by microorganisms. Adv Micro Physiol 35: 275–306

    CAS  Google Scholar 

  • Furukawa T, Syono K (1998) Increased production of IAA by Rhizoctonia solani is induced by culture filtrates from rice suspension culture. Plant Cell Physiol 39: 43–48

    CAS  Google Scholar 

  • Furukawa T, Koga J, Adachi T, Kishi K, Syono K (1996) Efficient conversion of L-tryptophan to indole3-acetic acid and/or tryptophol by some species of Rhizoctonia. Plant Cell Physiol 37: 899–905

    CAS  Google Scholar 

  • Gane R (1934) Production of ethylene by some ripening fruit. Nature 134: 1008

    CAS  Google Scholar 

  • Gentile AC, Klein RM (1955) The apparent necessity of indoleacetic acid for the growth of Diplodia (Fungi Imperfecti). Physiol Plant 8: 291–297

    CAS  Google Scholar 

  • Gianfagna T (1995) Natural and synthetic growth regulators and their use in horticultural and agronomic crops. In: Davies PJ (ed) Plant hormones. Kluwer, Dordrecht, pp 751–773

    Google Scholar 

  • Good X, Kellog JA, Wagoner W, Langhoff D, Matsumura W, Bestwick RK (1994) Reduced ethylene synthesis by transgenic tomatoes expressing S-adenosylmethionine hydrogenase. Plant Mol Biol 26: 781–790

    CAS  Google Scholar 

  • Goto M, Ishida Y, Takikawa Y, Hyodo H (1985) Ethylene production by kudzu strains of Pseudomonas syringae pv. phaseolicola causing halo blight in Pueraria lobata. Plant Cell Physiol 26: 141–150

    CAS  Google Scholar 

  • Graham JH, Linderman RG (1980) Ethylene production by ectomycorrhizal fungi, Fusarium oxysporum f. sp. pini, and by aseptically synthesized ectomycorrhizae and Fusarium-infected Douglas-fir roots. Can J Microbiol 26: 1340–1347

    CAS  Google Scholar 

  • Gruen HE (1959) Auxins and fungi. Annu Rev Plant Physiol 10: 405–440

    CAS  Google Scholar 

  • Gryndler M, Hrselova H, Chvatalova I, Jansa J (1998) The effect of selected plant hormones on in vitro proliferation of hyphae of Glomus fistulosum. Biol Plant 41: 255–263

    CAS  Google Scholar 

  • Guilfoyle T. Hagen G, Ulmasov T, Murfett J (1998) How does auxin turn on genes? Plant Physiol 118: 341–347

    Google Scholar 

  • Gulati A, Mandahar CL (1984) Pathogenesis of rice leaves by Helminthosporium oryzae: secretion of cytokinins in vitro by the fungus. Res Bull Panjab Univ 35: 115–121

    CAS  Google Scholar 

  • Gulati A, Mandahar CL (1986) Host-parasite relationship in Helminthosporium turcicum-zea mays complex: involvement of cytokinin-like substances in pathogenesis. Ind J Exp Biol 24: 309–314

    CAS  Google Scholar 

  • Hedden P, Kamiya Y (1997) Gibberellin biosynthesis: enzymes, genes and their regulation. Annu Rev Plant Physiol Plant Mol Biol 48: 431–460

    CAS  Google Scholar 

  • Henfling JWDM, Bostock R. Kuc J (1979) Effect of abscisic acid on rishitin and lubimin accumulation and resistance to Phytophthora infestans and Cladosporiurn cucumerinum in potato tuber tissue slices. Phytopathology 70: 1074–1078

    Google Scholar 

  • Hirai N, Okamoto M, Koshimizu K (1986) The l’,4’-transdial of abscisic acid, a possible precursor of abscisic acid in Botrytis cinerea. Phytochemistry 25: 1865–1868

    CAS  Google Scholar 

  • Homann V, Mende K, Arntz C, Ilardi V, Macino G, Morelli G, Böse G, Tudzynski B (1996) The isoprenoid pathway: cloning and characterization of fungal FPPS genes. Curr Genet 30: 232–239

    CAS  Google Scholar 

  • Hooley R (1994) Gibberellins: perception, transduction and responses. Plant Mol Biol 26: 1529–1555

    CAS  Google Scholar 

  • Hori S (1898) Some observations on “bakanae” disease of the rice plant. Man Agric Res Stn Tokyo 12: 110

    Google Scholar 

  • Hottiger T, Boller T (1991) Ethylene biosynthesis in Fusarium oxysporum f. sp. tulipae proceeds from glutamate/2-oxoglutarate and requires oxygen and ferrous ions in vivo. Arch Mierobiol 157: 18–22

    CAS  Google Scholar 

  • Hu GG. Rijkenberg FHJ (1998) Utrastructural localization of cytokinins in Puccinia recondita f.sp. tritici-infected wheat leaves. Physiol Mol Plant Pathol 52 (2): 79–94

    CAS  Google Scholar 

  • Hua J, Meyerowitz M (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94: 261–271

    CAS  Google Scholar 

  • Llag L, Curtis RW (1968) Production of ethylene by fungi. Science 159: 1357

    Google Scholar 

  • Ingram DS, Tommerup IC (1972) The life history of Plasmodiophora brassicae Woron. Proc R Soc Lond B 180: 103–112

    Google Scholar 

  • Isaac S (ed) (1992) Fungal-plant interactions. Chapman and Hall, London, pp 252–265

    Google Scholar 

  • Jacobsen JV, Chandler PM (1987) Gibberellin and abscisic acid in germinating cereals. In: Davies PJ (ed) Plant hormones and their role in plant growth and development. Martinus Nijhoff, Dordrecht, pp 164–193

    Google Scholar 

  • Johnson PR, Ecker JR (1998) The ethylene gas signal transduction pathway: a molecular perspective. Annu Rev Genet 32: 227–254

    CAS  Google Scholar 

  • Jones AM (1994) Auxin-binding proteins. Annu Rev Plant Physiol Plant Mol Biol 45: 393–420

    CAS  Google Scholar 

  • Jouanneau JP, Lapous D, Guern J (1991) In plant protoplasts, the spontaneous expression of defense reaction and the responsiveness to exogenous elicitors are under auxin control. Plant Physiol 96: 459–466

    CAS  Google Scholar 

  • Kamisaka S, Yanagishima N, Masuda Y (1967) Effect of auxin and gibberellin on sporulation in yeast. Physiol Plant 20: 90–97

    CAS  Google Scholar 

  • Kaneta T Kakimoto T, Shibaoka H (1993) Actinomycin D inhibits the GA3-induced elongation of azuki bean epicotyls and the reorientation of cortical micro-tubules. Plant Cell Physiol 34: 1125–1132

    CAS  Google Scholar 

  • Kawaide H, Imai RT, Sassa R, Kamiya Y (1997) entKaurene synthase from the fungus Phaeosphaeria sp. L487. J Biot Chem 272:21706–21712

    Google Scholar 

  • Kawanabe Y, Yamane H, Murayama T, Takahashi N, Nakamura T (1983) Identification of gibberellin A3 in mycelia of Neurospora crossa. Agric Biol Chem 47: 1693–1694

    CAS  Google Scholar 

  • Kawanabe Y, Yamane H, Takahasi N et al (1985) Identification of GA3 in Neurospora crassa and its changes during conidial germination and mycelial growth. Agric Biol Cheni 49: 2447–2450

    CAS  Google Scholar 

  • Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44: 283–307

    CAS  Google Scholar 

  • Kende H, Zeevaart JAD (1997) The five “classical” plant hormones. Plant Cell 9: 1197–1210

    CAS  Google Scholar 

  • Kepczynska E (1989) Ethylene requirement during germination of Botrytis cinerea spores. Physiol Plant 77: 369–372

    CAS  Google Scholar 

  • Kepczynska E (1994) Involvement of ethylene in spore germination and mycelial growth of Alternaria alternata. Mycol Res 98: 118–120

    CAS  Google Scholar 

  • Kepczynski J, Kepczynska E (1977) Effect of ethylene on germination of fungal spores causing fruit rot. Fruit Sci Rep 4: 31–35

    CAS  Google Scholar 

  • Kerenyi Z, Zeller K, Hornok L, Leslie JF (1999) Standardization of mating type terminology in the Gibberella fujikuroi species complex. Appl Environ Microbiol 65: 4071–4076

    CAS  Google Scholar 

  • Kettner J, Dörffling K (1995) Biosynthesis and metabolism of abscisic acid in tomato leaves infected with Botrytis cinerea. Planta 196: 627–634

    CAS  Google Scholar 

  • Kieber JJ (1997) The ethylene response pathway in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol 48: 277–296

    CAS  Google Scholar 

  • Kim J, Harter K, Theologis A (1997) Protein-protein interactions among the Aux/IAA proteins. Proc Natl Acad Sci USA 94: 11768–11791

    Google Scholar 

  • Kitagawa Y, Yamamoto H, Oritani T (1995) Biosynthesis of abscisic acid in the fungus Cercospora cruenta: stimulation of biosynthesis by water stress and isolation of a transgenic mutant with reduced biosynthetic capacity. Plant Cell Physiol 36: 557–564

    CAS  Google Scholar 

  • Klee HJ, Romano CP (1994) The roles of phytohormones in development as studied in transgenic plants. Crit Rev Plant Sci 13: 311–324

    CAS  Google Scholar 

  • Knoester M, van Loon LC, van den Heuvel J, Hennig J, Bol JF (1998) Ethylene-insensitive tobacco lacks non-host resistance against soil-borne fungi. Proc Nall Acad Sci USA 95: 1933–1937

    CAS  Google Scholar 

  • Kobata T, Hara S (1994) A convenient method for determining the effect of abscisic acid on the stomatal aperture of rice (Oryza sativa L.) by feeding solution to the leaf tip. Jpn J Crop Sci 63: 638–642

    CAS  Google Scholar 

  • Kobayashi M,Todoroki Y, Hirai N, Kurimura Y, Ohigashi H, Tsuji Y (1998) Biological activities of abscisic acid analogs in the morphological change of the green alga Haematococcus pluvialis. J Ferment Bioeng 85: 529–531

    Google Scholar 

  • Koga J, Adachi T, Hidaka H (1991) IAA biosynthesis pathway from triptophan via indole-3-pyruvic acid in Enterobacter cloacae. Agric Biol Chem 55: 701–706

    CAS  Google Scholar 

  • Kojima K (1995) Simultaneous measurement of ABA, IAA and GAs in citrus–role of ABA in relation to sink ability. J Jpn Agric Res 29: 179–185

    CAS  Google Scholar 

  • Koornneef M, Leon-Klosterziel KM, Schwartz SH, Zeevaart JAD (1998) The genetic and molecular dissection of abscisic acid biosynthesis and signal transduction inArabidopsis. Plant Physiol Biochem 36: 83–89

    CAS  Google Scholar 

  • Kovac M, Zel J (1995) The effect of aluminium on cytokinin in the mycelia of Amanita muscaria. J Plant Growth Regul 14: 117–120

    CAS  Google Scholar 

  • Kurosawa E (1926) Experimental studies on the nature of the substance excreted by the “bakanae” fungus. Trans Nat Hist Soc Formosa 16: 213–227

    Google Scholar 

  • Kusnetsov V, Herrmann RG, Kulaeva ON, Oelmuller R (1998) Cytokinin stimulates and abscisic acid inhibits greening of etiolated Lupinus luteus cotyledons by affecting the expression of the light-sensitive protochlorophyllide oxidoreductase. Mol Gen Genet 259: 21–28

    CAS  Google Scholar 

  • Laten HM (1995) Cytokinins affect spore formation but not cell division in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1266: 45–49

    Google Scholar 

  • Laureys F, Dewittc W, Witters E, Van Montagu M, Inze D, Van Onckelen H (1998) Zeatin is indispensable for the G(2)-M transition in tobacco BY-2 cells. FEBS Lett 426: 29–32

    CAS  Google Scholar 

  • Leyser O (1997) Auxin: lessons from a mutant weed. Physiol Plant 100: 407–414

    CAS  Google Scholar 

  • Li A, Heath MC (1990) Effect of plant growth regulators on the interactions between bean plants and rust fungi non-pathogenic on beans. Phyiol Mol Pathol 37: 245–254

    CAS  Google Scholar 

  • Lichter A, Barash I, Valinsky L, Manulis S (1995) The genes involved in cytokinin biosynthesis in Erwinia herbicola pv. gypsophilae: characterization and role in gall formation. J Bacteriol 177: 4457–4465

    CAS  Google Scholar 

  • Lindow SE, Desurmont C, Elkins R, McGourty G, Clark E, Brandt MT (1998) Occurrence of indole-3-acetic acid-producing bacteria on pear trees and their association with fruit russet. Phytopathology 88: 1149–1157

    CAS  Google Scholar 

  • Lonsane BK, Kumar PKR (1992) Fungal plant growth regulators. In: Arora DK. Elander RP. Mukerji KG (eds) Handbook of applied mycology, vol 4. Fungal biotechnology. Dekker, New York, pp 565–602

    Google Scholar 

  • Ludwig-Muller J, Bendel U, Thermann P, Ruppel M, Epstein E, Hilgenberg W (1993) Concentrations of indole-3-actic acid in plants of tolerant and susceptible varieties of Chinese cabbage infected with Plasmodiophora brassicae Woron. New Phvtol 125: 763–769

    Google Scholar 

  • MacDonald H (1997) Auxin perception and signal transduction. Physiol Plant 100: 423–430

    CAS  Google Scholar 

  • MacMillan J (1997) Biosynthesis of the gibberellin plant hormones. Nat Prod Rep 14: 221–243

    CAS  Google Scholar 

  • Mandahar CL, Suri RA (1983) Secretion of cytokinins in vivo and in vitro by Alternaria brassicae and their role in pathogenesis. Trop Plant Sci Res 1: 285–288

    Google Scholar 

  • Mandahar CL, Angra R (1987) Involvement of cytokinins in fungal pathogenesis. Res Bull Panjab Univ 38: 35–49

    CAS  Google Scholar 

  • Manulis S, Haviv-Chesner A, Brandl MT. Lindow SE, Barash I (1998) Differential involvement of the indole-3-acetic acid biosynthetic pathways in pathogenicity and epiphytic fitness of Erwinin hrbicola pv. gypsophilae. Mol Plant Microbe Interact 11: 634–642

    CAS  Google Scholar 

  • Marin E, Nussaume L, Quesada A, Gonneau M, Sotta B, Hugueney P, Frey A, Marion-Poll A (1996) Molecular identification of zeaxanthin epoxidase of Nicotiana plombaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J 15: 2331–2342

    CAS  Google Scholar 

  • Marumo S, Katayama M, Komori E, Ozaki Y. Natsume M, Kondo S (1982) Microbial production of abscisic acid by Botrytis cinerea. Agric Biol Chem 46: 1967–1968

    CAS  Google Scholar 

  • McCourt P (1999) Genetic analysis of hormone signaling. Annu Rev Plant Physiol Plant Mol Biol 50: 219–243

    CAS  Google Scholar 

  • Meloch A, Lapsker Z, El-Masri M, Hardan K, Barakat R, Ali-Shtayeh MS, Shtevi A, Sharon A, Tudzynski P, Elad Y (1999) Effect of exogenous application of plant hormones and ethylene inhibitors on gray mold, white mold and powdery mildews in tomato, bean, pepper and cucumber plants. International congress of plant protection, Jerusalem, p 108

    Google Scholar 

  • Mende K, Homann V, Tudzynski B (1997) The geranylgeranyl diphosphate synthase gene of Gibberella fujikuroi: isolation and expression. Mol Gen Genet 255: 96–105

    CAS  Google Scholar 

  • Mendu N, Silflow CD (1993) Elevated levels of tubulin transcripts accompany the GA;-induced elongation of oat internode segments. Plant Cell Physiol 34: 973–983

    CAS  Google Scholar 

  • Michniewicz M, Michalski L, Rozcj B (1987) Control of growth and development of Fusarium culmorum (W.G.Sm.) Sacc. by abscisic acid under unfavorable pH values of the media and temperature. Bull Pol Acad Sci Biol Sci 35: 143–151

    CAS  Google Scholar 

  • Miklashevichs E, Walden R (1997) Plant mutants with altered responses to cytokinins. Physiol Plant 100: 528–533

    CAS  Google Scholar 

  • Milborrow BV, Lee H-S (1998a) Endogenous biosynthetic precursors of (+)-abscisic acid. VI. Carotenoids and ABA are formed by the “non-mevalonate” triosepyruvatc pathway in chloroplasts. Aust J Plant Physiol 25: 507–512

    CAS  Google Scholar 

  • Milborrow BV, Lee H-S (1998b) Endogenous biosynthetic precursors of (+)-abscisic acid. VII. The 1,4’-trans-diol is formed from ABA, it is not a precursor. Aust J Plant Physiol 25: 729–737

    CAS  Google Scholar 

  • Mills LJ, Van Staden J (1978) Cytokinins from soils. Physiol Plant Pathol 13: 73–80

    CAS  Google Scholar 

  • Morris RO (1995) Genes specifying auxin and cytokinin biosynthesis in prokaryotes. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology. Kluwer, Dordrecht, pp 318–339

    Google Scholar 

  • Motyka V, Faiss M. Strnad M, Kaminek M, Schmülling T (1996) Changes in cytokinin content and cytokinin oxidase activity in response to derepression of ipt gene transcription in transgenic tobacco calli and plants. Plant Physiol 112: 1035–1043

    CAS  Google Scholar 

  • Moukadiri O. Lopes CR, Cornejo MJ (1999) Physiological and genomic variations in rice cells recovered from direct immersion and storage in liquid nitrogen. Physiol Plant 105: 442–449

    Google Scholar 

  • Munoz GA, Agosin A (1993) Glutamine involvement in nitrogen control of gibberellic acid production in Gibberella fujikuroi. Appl Environ Microbiol 59: 4317–4322

    CAS  Google Scholar 

  • Murphy AM, PryceJones E, Hohnstone K, Ashby AM (1997) Comparison of cytokinin production in vitro by Pyrenopeziza brassicae with other plant pathogens. Physiol Mol Plant Pathol 50: 53–65

    CAS  Google Scholar 

  • Nagahama K, Ogawa T, Fujii T, Fukuda H (1992) Classification of ethylene-producing bacteria in terms of biosynthetic pathways to ethylene. J Ferment Bioeng 73: 1–5

    CAS  Google Scholar 

  • Nakamura T, Kawanabe Y, Takiyama E. Takahashi N, Murayama T (1978) Effects of auxin and gibberellin on conidial germination in Neurospora crassa. Plant Cell Physiol 19: 705–709

    CAS  Google Scholar 

  • Nakamura T, Tomita K, Kawanabe Y, Murayama T (1982) Effect of auxin and gibberellin on conidial germination in Neurospora crassa Il. “Conidial density effect” and auxin. Plant Cell Physiol 23: 1363–1369

    CAS  Google Scholar 

  • Neill SJ, Horgan R, Walton DD, Mercer CM (1987) The metabolism of a-ionylidene compounds by Cercospora rosicola. Phytochemistry 26: 2515–2519

    CAS  Google Scholar 

  • Nickell LG (1982) Plant growth regulators–agricultural uses. Springer-Verlag, Berlin Heidelberg NewYork, pp 1–173

    Google Scholar 

  • Norman SM, Maier VP, Echols LC (1981) Influence of nitrogen source, thiamine and light on biosynthesis of abscisic acid by Cercospora rosicola Passerini. Appl Environ Microbiol 41: 981–985

    CAS  Google Scholar 

  • Norman S, Poling SM, Maier VP, Orme ED (1983) Inhibition of abscisic acid biosynthesis in Cercospora rosi-cola by inhibitors of gibberellin biosynthesis and plant growth retardants. Plant Physiol 71: 15–18

    CAS  Google Scholar 

  • Normanly J (1997) Auxin metabolism. Physiol Plant 100: 431–442

    CAS  Google Scholar 

  • Normanly J, Bartel B (1999) Redundancy as a way of life–IAA metabolism. Curr Opin Plant Biol 2: 207–213

    CAS  Google Scholar 

  • Okamoto M, Hirai N, Koshimizu K (1988) Biosynthesis of abscisic acid in Cercospora pisi densiflorae. Phytochemistry 27: 2099–2103

    CAS  Google Scholar 

  • Oritani T, Yamashita K (1985) Biosynthesis of (+)-abscisic acid in Cercospora cruenta. Agric Biol Chem 49: 245–249

    CAS  Google Scholar 

  • OritaniT,lchimura M, Yamashita K (1984) A novel abscisic acid analog, (+)-(2Z, 4 E)-5-)1’, 4’-dihydroxy-6’, 6’-dimethyl-2’-methylene-cycloexyl)-3-methyl-2, 4,pentadienoic acid from Cercospora cruenta. Agric Biol Chem 48: 1677–1678

    Google Scholar 

  • Palmer GM (1974) The industrial use of gibberellic acid and its scientific basis - a review. J Inst Brewing 80: 1330

    Google Scholar 

  • Patten LC, Glick BR (1996) Bacterial biosynthesis of indolc-3-acetic acid. Can J Microbiol 42: 207–220

    CAS  Google Scholar 

  • Pegg GF (1981) The involvement of growth regulators in the diseased plant. In: Ayres PG (ed) Effects of disease on the physiology of the growing plant. Cambridge Univ Press. Cambridge, pp 149–177

    Google Scholar 

  • Pena-Cortes H, Sanchez-Serrano J, Mertens R, Willmitzer L, Prat S (1989) Abscisic acid is involved in the wound-induced expression of the proteinase inhibitor II gene in potato and tomato. Proc Natl Acad Sci USA 86: 9851–9855

    CAS  Google Scholar 

  • Pena-Cortes H, Sanchez-Serrano J, Prat S, Willmitzer L (1994) Signals involved in the wound-induced expression of the proteinase inhibitor II gene of potato. Biochem Soc Symp 60: 143–148

    CAS  Google Scholar 

  • Pharis RE King RW (1985) Gibberellins and reproductive development in seed plants. Annu Rev Plant Physiol 36: 517–568

    CAS  Google Scholar 

  • Piaggesi A, Picciarelli P, Ceccarelli N, Lorenzi R (1997) Cytokinin biosynthesis in endosperm of Sechium edule Sw. Plant Sci 129: 131–140

    CAS  Google Scholar 

  • Prinsen E, Kaminek M, van Onckelen HA (1997) Cytokinin biosynthesis: a black box? Plant Growth Regul 23: 3–15

    CAS  Google Scholar 

  • Qadir A, Hewett EW, Long PG (1997) Ethylene production by Botrytis cinerea. Postharvest Biol Technol 11: 85–91

    CAS  Google Scholar 

  • Rademacher W (1992) Occurrence and identity of gibberellins in different species of the fungal genera Sphaceloma and Elsinoe. Phytochemistry 31: 4155–4157

    CAS  Google Scholar 

  • Rademacher W (1997) Gibberellins. In: Anke T (ed) Fungal biotechnology. Chapman and Hall, London, pp 193–205

    Google Scholar 

  • Rademacher W, Graebe JE (1979) Gibberellin A4 produced by Sphaceloma manihoticola, the cause of the superelongation disease of cassava (Manihoticola esculenta). Biochem Biophys Res Commun 91: 3540

    Google Scholar 

  • Rafi MM, Zemetra RS, Dempster K (1995) Effects of abscisic acid on wheat callus cultures. Cereal Res Commun 23: 375–382

    CAS  Google Scholar 

  • Reutter K, Atzorn R, Hadeler B, Schmulling ‘t, Reski R (1998) Expression of the bacterial ipt gene in Physcomitrella rescues mutations in budding and in plastid division. Planta 206: 196–203

    CAS  Google Scholar 

  • Robinette D, Matthysse AG (1990) Inhibition by Agrobacterium tumefaciens and Pseaudomonas savastanoi of development of the hypersensitive response elicited by Pseudomonas syringae pv. phaselicola. J Bacteriol 17: 5742–5749

    Google Scholar 

  • Robinson M, Riov j, Sharon A (1998) Indole-3-acetic acid biosynthesis in Colletotrichum gloeosporioides f. sp. aeschynomene. Appl Environ Microbiol 64: 5030–5032

    CAS  Google Scholar 

  • Rojas C, Hedden P, Gaskin P, Tudzynski B (2001) The P4501 gene of Gibberella fujikuroi encodes a multifunctional enzyme in gibberellin biosynthesis. Proc Natl Acad Sci USA 98: 5838–5843

    CAS  Google Scholar 

  • Rouse D, Mackay P, Strinberg P, Estelle M, Leyser O (1998) Changes in auxin response from mutations in an AUX/IAA gene. Science 279: 1371–1373

    CAS  Google Scholar 

  • Russo VEA, Halloran B, Gallroi E (1977) Ethylene is involved in the autochemotropism of Phycomyces. Planta 134: 61–67

    CAS  Google Scholar 

  • Salisbury FB, Ross CW (1992) Hormones and growth regulators: auxins and gibberellins. In: Salisbury FB, Ross CW (eds) Plant physiology. Wadsworth, Belmont. pp 357–407

    Google Scholar 

  • Sandmann G (1998) Manipulation of carotenoid biosynthesis and implications on abscisic acid formation. Riken Symposium Frontier Research Form, Frontiers of Gibberellin Research, part V. Suzuki Umetaro and Ohkouchi Hall, Tokyo, Japan

    Google Scholar 

  • Sassa T, Suzuki K, Haruki E (1989) Isolation and identification of gibberellins A4 and A9 from a fungus Phaeosphaeria sp. Agric Biol Chem 53: 303–304

    CAS  Google Scholar 

  • Sassa T, Kawaide H, Takarada T (1994) Identification of gibberellins A4, A9, and A24 from Phaeosphaeria sp. L487 cultured in a chemically defined medium. Biosci Biotech Biochem 58: 438–439

    CAS  Google Scholar 

  • Schramm E Rausch T, Hilgenberg W (1987) Indole3-ethanol oxidase in Phycomyces blakesleeanus. Is indole-3-ethanol a “storage pool” for IAA? Physiol Plant 69: 99–104

    CAS  Google Scholar 

  • Schwartz SH, Léon-Kloosterziel KM, Koornneef M, Zeevaart JAD (1997) Biochemical characterization of the abat and aba3 mutants in Arabidopsis thaliana Plant Physiol 114: 161–166

    CAS  Google Scholar 

  • Shaul O, Elad Y. Zieslin N (1996) Suppression of Botrytis blight in cut rose flowers with gibberellic acid. Effects of exogenous application of abscisic acid and paclobutrazol. Postharvest Biol Technol 7: 145–150

    CAS  Google Scholar 

  • Shin M, Shinguu T, Sano K, Umezawa C (1991) Metabolic fates of L-Tryptophan in Saccharomyces uvarum (Saccharomyces carlsbergensis). Chem Pharm Bull 39: 1792–1795

    CAS  Google Scholar 

  • Shinshi H. Mohnen D, Frederick M (1987) Regulation of a plant pathogenesis-related enzyme: inhibition of chitinase and chitinase mRNA accumulation in cultured tobacco tissues by auxin and cytokinin. Proc Natl Acad Sci USA 84: 89–93

    Google Scholar 

  • Shtevi A, Lapsker Z, Meloch A, Sharon A, Barakat R, Hardan K, El-Masri M, Tudzynski P, Elad Y (1999) Ethylene production by both the pathogen Botrytis cinerea, and by the hosts, bean and tomato plants. Int Congr of Plant protection, Jerusalem, p 37

    Google Scholar 

  • Smigocki AC (1995) Phenotype modification and enhanced tolerance to insect pests by regulated expression of a cytokinin biosynthesis gene. Hortscicnce 30: 967–969

    CAS  Google Scholar 

  • Sosa-Morales ME, Guevara-Lara F, Martinez-Juarez VM, Parades-Lopez O (1997) Production of indole-3-acetic acid by mutant strains of Ustilago maydis (maize smut/huitlacoche).Appl Microbiol Biotechnol 48: 726–729

    CAS  Google Scholar 

  • Su MY, Hodges CF (1989) Ethylene production by Bipolaris sorokiniana and Curvularia geniculata on methionine and inorganic salts. Plant Dis 73: 398–401

    CAS  Google Scholar 

  • Summers JE, Voesenek LACJ, Bolm CWPM, Lewis MJ, Jackson MB (1996) Potamogeton pectinatus is constitutively incapable of synthesizing ethylene and lacks 1-aminocyclopropane-lcarboxylic acid oxidase. Plant Physiol 111:901–908

    Google Scholar 

  • Sun T-P, Kamiya Y (1997) Regulation and cellular localization of ent-kaurene synthesis. Physiol Plant 101: 702–708

    Google Scholar 

  • Sunder S, Satyavir (1998) Vegetative compatibility, biosynthesis of GA3 and virulence of Fusarium moniliforme isolates from bakanae disease of rice. Plant Pathol 47: 767–772

    CAS  Google Scholar 

  • Swain SM, Olszewski NE (1996) Genetic analysis of gibbberellin signal transduction. Plant Physiol 112: 1117

    Google Scholar 

  • Swain SM, Reid JB, Kamiya Y (1997) Gibberellins are required for embryo growth and seed development in pea. Plant J 12: 1329–1338

    CAS  Google Scholar 

  • Takayama T, Yoshida H, Araki K, Nakayama K (1983a) Microbial production of abscisic acid with Cercospora rosicola. 1. Stimulation of ABA accumulation by plant extracts. Biotechnol Lett 5: 55–58

    CAS  Google Scholar 

  • Takayama T, Yoshida H, Araki K, Nakayama K (1983b) Microbial production of abscisic acid with Cercospora rosicola. 2. Stimulation pH control and medium composition. Biotechnol Lett 5: 59–62

    Google Scholar 

  • Talieva MN, Filimonova MV. Andreev LN (1991) Compounds with cytokinine activity in Erysiphe cichoracearum phlox mildew causative agent. Izv Adad Nauk SSSR Ser Biol 2:194–200

    Google Scholar 

  • Talieva MN, Filimonova MV (1992) On parasitic specialization of the Botrytis species in the light of new experimental data. J Gen Biol (Moscow) 53: 225–231

    Google Scholar 

  • Tan BC, Schwartz SH, Zeevaart JAD, McCarty DR (1997). Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci USA 94: 12235–12240

    CAS  Google Scholar 

  • Tapani T, Livesoksa J, Laasko S, Rosenqvist H (1993) Interaction of abscisic acid and indole-3-acetic acid-producing fungi with Salix leaves. J Plant Grow Regul 12: 149–156

    Google Scholar 

  • Theologis A (1998) Ethylene signaling: redundant recep- tors all have their say. Curr Biol 8: R875 - R878

    CAS  Google Scholar 

  • Theologis A, Oeller PW, Wong LM, Rottmann WH, Gantz D (1993) Use of tomato mutant constructed with reverse genetics to study ripening, a complex developmental process. Dev Genet 14: 282–295

    CAS  Google Scholar 

  • Thiman KV (1936) On the physiology of the formation of module of legume roots. Proc Natl Acad Sci USA 22: 511–514

    Google Scholar 

  • Tomita K. Murayama T, Nakamura T (1984) Effects of auxin and gibberellin on elongation of young hyphae in Neurospora crassa. Plant Cell Physiol 25: 355–358

    Google Scholar 

  • Tudzynski B (1997) Fungal phytohormones in pathogenic and mutualistic associations. In: Carroll GC, Tudzynski P (eds) The Mycota V, part A: plant relationships. Springer, Berlin Heidelberg New York. pp 167–184

    Google Scholar 

  • Tudzynski B, Wilier K (1998) The gibberellin biosynthetic pathway in Gibberella fujikuroi: evidence for a gene cluster. Fung Genet Biol 25: 157–170

    CAS  Google Scholar 

  • Tudzynski B, Kawaide H, Kamiya Y (1998) Gibberellin biosynthesis in Gibberella fujikuroi: cloning and characterization of the copatyl diphosphate synthase gene. Curr Genet 34: 234–240

    CAS  Google Scholar 

  • Tudzynski B, Homann V, Feng B, Marzluf GA (1999) Isolation, characterization and disruption of the areA nitrogen regulatory gene of Gibberella fujikuroi. Mol Gen Genet 261: 106–114

    CAS  Google Scholar 

  • Tudzynski B, Hedden P, Carrera E, Gaskin P (2001) The P450–4 gene of Gibberellafujikuroi encodes entkaurene oxidase in the gibberellin biosynthetic pathway. Appl Environm Microbiol 67, 8, in press

    Google Scholar 

  • Ünyayar S. Topcuoglu SF, Bozcuk S (1997) Abscisic acid production by Pleurotus florida cultured in various conditions and its relation to growth. Isr J Plant Sci 45: 19–22

    Google Scholar 

  • Vizhrovl G, Chalanyovl M, Janitor A, Dugovl O, Bacigâlovâ K, Takhc L (1997) Secretion of abscisic acid by hemibiotrophic fungi. Biologia (Bratislava) 52: 807–809

    Google Scholar 

  • Vogel JP, Schuerman P. Woeste K, Branstatter 1, Kieber JJ (1998) Isolation and characterization of Arabidopsis mutants defective in the induction of ethylene biosynthesis by cytokinin. Genetics 149: 417–427

    CAS  Google Scholar 

  • Wcingart H, Volksch B, Ullrich MS (1999) Comparison of ethylene production by Pseudomonas syringae and Ralstonia solanacearum. Phytopathology 89: 360–365

    Google Scholar 

  • Woitek S, Unkles SE, Kinghorn J R, Tudzynski B (1997) 3-Hydroxy-3-methylglutaryl-CoA reductase gene of Gibberella fujikuroi: isolation and characterization. Curr Genet 31:38–47

    Google Scholar 

  • Wolf FT (1952) The production of indoleacetic acid by Ustilago zeae and its possible significance in tumor formation. Proc Natl Acad Sci USA 38: 106–111

    CAS  Google Scholar 

  • Xu HL, Shida A, Futatsuya f, Kumura A (1994a) Effects of epibrassinolide and abscisic acid on Sorghum plants growing under soil water deficit. 1. Effects on growth and survival. Jpn J Crop Sci 63: 671–675

    CAS  Google Scholar 

  • Xu HL, Shida A, Futatsuya f, Kumura A (1994b) Effects of epibrassinolide and abscisic acid on Sorghum plants growing under soil water deficit. 2. Physiological basis for drought resistance induced by exogenous epibrassinolide and abscisic acid. Jpn J Crop Sci 63: 676–681

    CAS  Google Scholar 

  • Yamada T (1993) The role of auxin in plant-disease development. Annu Rev Phytopathol 31: 253–273

    CAS  Google Scholar 

  • Yamamoto H, Oritani T (1997) Incorporation of farnesyl pyrophosphate derivatives into abscisic acid and its biosynthetic intermediates in Cercospora cruenta. Biosci Biotech Biochem 61: 821–824

    CAS  Google Scholar 

  • Yamamoto H, Oritani T, Morita T, Tanaka A (1995) Isolation and metabolism of 3’-hydroxy-y-ionylideneacetic acids in Cercospora cruenta. Phytochemistry 38: 365–369

    CAS  Google Scholar 

  • Yamamoto H, Sugiyama T, Oritani T (1996) Conformational analysis of abscisic acid analogs produced by Cercospora cruenta. Biosci Biotech Biochem 60: 750–754

    CAS  Google Scholar 

  • Yanagishima N (1965) Role of gibberellic acid in the growth response of yeast to auxin. Physiol Plant 18: 306–312

    CAS  Google Scholar 

  • Yang S, Hoffman N (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35: 155–189

    CAS  Google Scholar 

  • Yurekli F, Yesssilada O, Yurekli M, Topcuoglu SF (1999) Plant growth hormone production from olive oil mill and alcohol factory waste waters by white root fungi. World J Microbiol Biotechnol 15: 503–505

    CAS  Google Scholar 

  • Zak JC (1976) Pathogenicity of a gibberellin-producing and a non-producing strain of Fusarium moniliforme in oats as determined by a colorimetric assay for N-acetyl glucosamine. Mycologia 68: 151

    CAS  Google Scholar 

  • Zeevaart JAD (1999) Abscisic acid metabolism and its regulation. In: Hooykaas PJJ, Hall MA, Libbenga KR (eds) Biochemistry and molecular biology of plant hormones. Elsevier, New York, pp 189–207

    Google Scholar 

  • Zeevaart JAD, Creelman RA (1988) Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol 39: 439–473

    CAS  Google Scholar 

  • Zeigler RS, Powell LE, Thurston HD (1980) Gibberellin A4 production by Sphaceloma manihoticola, causal agent of cassava superelongation disease. Phytopathology 70: 589–596

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tudzynski, B., Sharon, A. (2002). Biosynthesis, Biological Role and Application of Fungal Phytohormones. In: Osiewacz, H.D. (eds) Industrial Applications. The Mycota, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10378-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10378-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07481-3

  • Online ISBN: 978-3-662-10378-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics