Journal of Real-Time Image Processing

, Volume 11, Issue 4, pp 829–846 | Cite as

Real-time velocity measurement to linear motion of a rigid object with monocular image sequence analyses

  • Danilo Filitto
  • Júlio Kiyoshi Hasegawa
  • Airton Marco Polidório
  • Nardênio Almeida MartinsEmail author
  • Franklin César Flores
Special Issue Paper


This paper presents a methodology and all procedures used to validate it, which were executed in a physics laboratory under controlled and known conditions. The validation was based on the analyses of registered data in an image sequence and the measurements acquired by high precision sensors. This methodology intended to measure the velocity of a rigid object in linear motion with the use of an image sequence acquired by commercial digital video camera. The proposed methodology does not need a stereo pair of images to calculate the object position in the 3D space: it needs only images sequence acquired for one, only one, angle view (monocular vision). To do so, these objects need to be detected while in movement, which is conducted by the application of a segmentation technique based on the temporal average values of each pixel registered in N consecutive image frames. After detecting and framing these objects, specific points belonging to the object (pixels), on the plane image (2D coordinates or space image), are automatically chosen, which are then transformed into corresponding points in the space object (3D coordinates) by the application of collinearity equations or rational functions (proposed in this work). After obtaining the coordinates of these points in the space object that are registered in the sequence of images, the distance, in meters, covered by the object in a particular time interval may be measured and, consequently, its velocity can be calculated. The system is low cost, use only a computer (architecture Intel I3), and a webcam used to acquire the images (640 × 480, 30 fps). The complexity of the algorithm is linear, fact that allows the system to operate in real time. The results of the analyses are discussed and the advantages and disadvantages of the method are presented.


Moving objects Image segmentation Geometric transformation Velocity measurement Rational polynomials Collinearity equations Monocular image sequence 


  1. 1.
    Aguilar, M.A., Aguilar, F.J., Agüera, F., Sánchez, J.A.: Geometric accuracy assessment of quickbird basic imagery using different operational approaches. Photogramm. Eng. Remote Sens. 73(12), 1321–1332 (2007)CrossRefGoogle Scholar
  2. 2.
    Atkociunas, E., Blake, R., Juozapavicius, A., Kazimianec, M.: Image processing in road. Traffic Anal., Nonlinear Anal. Model. Control 10(4), 315–332 (2005)zbMATHGoogle Scholar
  3. 3.
    Avidan, S., Shashua, A.: Trajectory triangulation: 3D reconstruction of moving points from a monocular image sequence. IEEE Trans. Pattern Anal. Mach. Intell. 22(4), 348–357 (2000). doi: 10.1109/34.845377 CrossRefGoogle Scholar
  4. 4.
    Barranco, F., Tomasi, M., Diaz, J., Vanegas, M., Ros, E.: Parallel architecture for hierarchical optical flow estimation based on FPGA. IEEE Trans. Very Large Scale Integration (VLSI) Syst. 20(6), 1058–1067 (2012)CrossRefGoogle Scholar
  5. 5.
    Bonneval, H.: Levés topographiques par photogrammétrie aérienne. In Photogrammétrie Générale: Tome 3, Collection scientifique de l’Institut Géographique National. Paris, France: Eyrolles Editeur 1972Google Scholar
  6. 6.
    Botella, G., Garcia, A., Rodriguez, M., Ros, E., Baese, U., Molina, M.: Robust bioinspired architecture for optical flow computation. IEEE Trans. Very Large Scale Integration (VLSI) Syst. 18(4), 616–629 (2010)CrossRefGoogle Scholar
  7. 7.
    Botella, G., Ros, E., Rodriguez, M., Garcia, A., Romero, S.: Pre-processor for bioinspired optical flow models: a customizable hardware implementation. Proceedings of the IEEE Mediterranean Electrotechnical Conference (MELECON), Málaga, Spain, 93–96 (2006). doi: 10.1109/MELCON.2006.1653044
  8. 8.
    Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. Int. J. Comput. Vision 61(3), 211–231 (2005). doi: 10.1023/B:VISI.0000045324.43199.43 CrossRefGoogle Scholar
  9. 9.
    Davis, J., Bobick, A.: The representation and recognition of human movement using temporal templates. IEEE Computer Soc Conf Computer Vision Pattern Recognit (CVPR’97), 928–934 (1997). doi: 10.1109/CVPR.1997.609439
  10. 10.
    Davis, J., Bradiski, G.: Real-time motion template gradients using Intel CVLib. In: proceedings of the ICCV Workshop on Frame-rate Vision, 1–20 (1999) Google Scholar
  11. 11.
    Ghilani, C.D.: General Least Squares Method and Its Application to Curve Fitting and Coordinate Transformations, in Adjustment Computations: Spatial Data Analysis (Fifth Edition). Hoboken, NJ, USA: Wiley, Inc. (2010). doi: 10.1002/9780470586266.ch22
  12. 12.
    Gupte, S., Masoud, O., Martin, R.F.K., Apanikolopoulos, N.P.: Detection and classification of vehicles. IEEE Trans. Intell. Transp. Syst. 3(1), 37–47 (2002). doi: 10.1109/6979.994794 CrossRefGoogle Scholar
  13. 13.
    Habib, Ayman F., Morgan, Michel F.: Automatic calibration of low-cost digital cameras. Opt. Eng. 42(4), 948–955 (2003). doi: 10.1117/1.1555732 CrossRefGoogle Scholar
  14. 14.
    Hamid, N.F.A., Ahmad, A.: Calibration of high resolution digital camera based on different photogrammetric methods. Proceedings of the 8th International Symposium of the Digital Earth (ISDE8), IOP Publishing on IOP Conf. Series. Earth Environ Sci 18, 1–6 (2014). doi: 10.1088/1755-1315/18/1/012030 Google Scholar
  15. 15.
    Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.: Real-time foreground-background segmentation using codebook model. Real-Time Imaging 11(3), 167–256 (2005). doi: 10.1016/j.rti.2004.12.004 CrossRefGoogle Scholar
  16. 16.
    Kraus K.: Photogrammetry Vol. 1. Fundamentals and Standard Processes (4th edition). Bonn, Germany: Ferdinand Dummlers (1993)Google Scholar
  17. 17.
    Li, R., Niu, X., Liu, C., Wu, B., Deshpande, S.: Impact of imaging geometry on 3d geopositioning accuracy of stereo ikonos imagery. Photogramm. Eng. & Remote Sens. 75(9), 1119–1125 (2009)CrossRefGoogle Scholar
  18. 18.
    Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of the Seventh International Joint Conference on Artificial Intelligence, vol.2, pp. 674–679. Vancouver (1981) Google Scholar
  19. 19.
    Novak, K.: Rectification of digital imagery. Photogramm. Eng. and Remote Sens. 58(3), 339–344 (1992)Google Scholar
  20. 20.
    Petrie, G., El Niweri, A.E.H.: The applicability of space imagery to the small scale topographic mapping of developing countries: a case study—the Sudan. ISPRS J. Photogramm. Remote Sens. 47(1), 1–42 (1992). doi: 10.1016/0924-2716(92)90002-Q CrossRefGoogle Scholar
  21. 21.
    Soh, J., Chun, B.T., Wang, M.: Analysis of road image sequences for vehicle counting. IEEE Trans. Intell. Transp. Syst. 1, 679–683 (1995). doi: 10.1109/ICSMC.1995.537842 Google Scholar
  22. 22.
    Toutin, T.: Review article: Geometric processing of remote sensing images: models, algorithms and methods. Int. J. Remote Sens. 25(10), 1893–1924 (2004). doi: 10.1080/0143116031000101611 CrossRefGoogle Scholar
  23. 23.
    Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE J. Robot. Autom. 3(4), 323–344 (1987). doi: 10.1109/JRA.1987.1087109 CrossRefGoogle Scholar
  24. 24.
    Weng, J., Cohen, P., Herniou, M.: Camera calibration with distortion models and accuracy evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 14(10), 965–980 (1992). doi: 10.1109/34.159901 CrossRefGoogle Scholar
  25. 25.
    Wolberg, J.: Data analysis using the method of least squares: extracting the most information from experiments. Berlin and Heidelberg GmbH & Co. KG, Germany: Springer (2005)Google Scholar
  26. 26.
    Wong, K.W.: Basic mathematics of photogrammetry. In: Slama, C.C. (ed.) Manual of Photogrammetry (4th edition), pp. 37–101. ASP Publishers, Falls Church (1980)Google Scholar
  27. 27.
    Yan, Y., Yancong, S., Zengqiang, M.: Research on vehicle speed measurement by video image based on Tsai’s two stage method. In: proceedings of the 5th International Conference on Computer Science and Education, 502–506 (2010). doi: 10.1109/ICCSE.2010.5593565
  28. 28.
    Zhiwei, H., Yuanyuan, L., Xueyi, Y.: Models of vehicle speeds measurement with a single camera. Proceedings of the International Conference on Computational Intelligence and Security Workshops, 283–286 (2007). doi: 10.1109/CISW.2007.4425492

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Danilo Filitto
    • 1
  • Júlio Kiyoshi Hasegawa
    • 2
  • Airton Marco Polidório
    • 1
  • Nardênio Almeida Martins
    • 1
    Email author
  • Franklin César Flores
    • 1
  1. 1.Department of InformaticsUEMMaringáBrazil
  2. 2.Cartography DepartmentUNESPPresidente PrudenteBrazil

Personalised recommendations