Skip to main content
Log in

Development of real-time object motion estimation from single camera

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

We present a new approach for determining 3D motion of a moving rigid object relative to a single camera in image sequences. To estimate motion parameters as characterized by 3D rotation and 3D translation, non-linear least square equations have been formulated. Corresponding features on an object were observed from images at different times. Good initial values of these non-linear equations were provided from a para-perspective projection model to overcome ill-conditioned convergence problem of the equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lepetit, V., & Fua, P. (2005). Monocular model-based 3D tracking of rigid objects: A survey. Computer Graphics and Vision, 1, 1–89.

    Article  Google Scholar 

  2. Doug Bowman, A. (2014). 3D user interfaces. In M. Soegaard & R.F. Dam (Eds.) The encyclopedia of human–computer interaction (2nd ed.). Aarhus: The Interaction Design Foundation. https://www.interaction-design.org/encyclopedia/3d_user_interfaces.html.

  3. Marchand, E., Uchiyama, H., & Spindler, F. (2016). Pose estimation for augmented reality: A hands-on survey. IEEE Transactions on Visualization and Computer Graphics, 22, 2633–2651.

    Article  Google Scholar 

  4. Qiang, W., Weiwei, Z., Xiaoou, T., & Heung-Yeung, S. (2006). Real-time Bayesian 3-D pose tracking. IEEE Transactions on Circuits and Systems for Video Technology, 16, 1533–1541. doi:10.1109/TCSVT.2006.885727.

    Article  Google Scholar 

  5. Han, Y. (2005). Geometric algorithms for least squares estimation of 3D information from monocular image. IEEE Transactions on Circuits and Systems for Video Technology, 15, 269–282. doi:10.1109/TCSVT.2004.841541.

    Article  Google Scholar 

  6. Yoshio, I., Yasushi, Y., & Masahiko, Y. (1995). A system for 3D motion and position estimation of hand from monocular image sequence. Advances in Human Factors/Ergonomics, 20, 809–814. doi:10.1016/S0921-2647(06)80314-X.

    Google Scholar 

  7. Jigang, L., Dongquan, L., Justin, D., & HockSoon, S. (2015). 3D Human motion tracking by exemplar-based conditional particle filter. Signal Processing, 110, 164–177. doi:10.1016/j.sigpro.2014.08.028.

    Article  Google Scholar 

  8. Migniot, C., & Ababsa, F. (2014). Hybrid 3D–2D human tracking in a topview. Journal of Real-Time Image Processing. doi:10.1007/s11554-014-0429-7.

    Google Scholar 

  9. Morward, T., Prankl, J., Zillich, M., & Vincze, M. (2015). Advances in real-time object tracking. Journal of Real-Time Image Processing, 10, 683–697. doi:10.1007/s11554-013-0388-4.

    Article  Google Scholar 

  10. Haralick, R. M., Joo, H., Lee, C., Zhuang, X., Vaidya, Y. G., & Kim, M. B. (1989). Pose estimation from corresponding point data. IEEE Transactions on Systems, Man, and Cybernetics, 19, 1426–1446. doi:10.1109/21.44063.

    Article  Google Scholar 

  11. Lu, C. P., Hager, G. D., & Mjolsness, E. (2000). Fast and globally convergent pose estimation from video images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 610–622. doi:10.1109/34.862199.

    Article  Google Scholar 

  12. Huang, T. S., & Tsai, R. Y. (1981). Image Sequence analysis: Motion estimation. In T. S. Huang (Ed.), Image Sequence analysis. New York: Springer.

    Chapter  Google Scholar 

  13. Huang, T. S. (1986). Determining three dimensional motion and structure from two perspective views. In T. Y. Young & K. S. Fu (Eds.), Handbook of pattern recognition and image processing. New York: Academic Press.

    Google Scholar 

  14. Tsai, R. Y., & Huang, T. S. (1984). Uniqueness and estimation of three-dimensional motion parameters of rigid objects with curved surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 13–27. doi:10.1109/TPAMI.1984.4767471.

    Article  Google Scholar 

  15. Weng, J., Huang, T. S., & Ahuja, N. (1989). Motion and structure from two perspective views: Algorithms, error analysis, and error estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 451–476. doi:10.1109/34.24779.

    Article  Google Scholar 

  16. Tsai, R. Y., & Huang, T. S. (1981). Estimating three-dimensional motion parameters of a rigid planar patch. IEEE Transactions on Acoustics, Speech, and Signal Processing, 29, 1147–1152. doi:10.1109/TASSP.1981.1163710.

    Article  Google Scholar 

  17. Tsai, R. Y., & Huang, T. S. (1982). Estimating three-dimensional motion parameters of a rigid planar patch, II: Singular value decomposition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 30, 525–534. doi:10.1109/TASSP.1982.1163931.

    Article  Google Scholar 

  18. Huang, T. S., & Netravali, A. N. (1994). Motion and structure from feature correspondences: A review. Proceedings of the IEEE, 82, 252–268.

    Article  Google Scholar 

  19. Ohta, Y., Maenobu, K., & Sakai, T. (1981). Obtaining surface orientation from texels under perspective projection. In Proceedings of 7th international joint conference on artificial intelligence (pp. 746–751).

  20. Sugimoto, A. (1996). Object recognition by combining paraperspective images. International Journal of Computer Vision, 19, 181–201. doi:10.1007/BF00055804.

    Article  Google Scholar 

  21. Aloimonos, J. Y. (1990). Perspective approximations. Image and Vision Computing, 8, 179–192. doi:10.1016/0262-8856(90)90064-C.

    Article  Google Scholar 

  22. Poelman, C. J., & Kanade, T. (1997). A paraperspective factorization method for shape and motion recovery. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19, 206–218. doi:10.1109/34.584098.

    Article  Google Scholar 

  23. Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 1330–1334. doi:10.1109/34.888718.

    Article  Google Scholar 

  24. Hesch, J. A., & Roumeliotis, S. I. (2011) A direct least-squares (DLS) method for PnP. IEEE ICCV.

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2016R1A2B4013017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taejung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tumurbaatar, T., Kim, T. Development of real-time object motion estimation from single camera. Spat. Inf. Res. 25, 647–656 (2017). https://doi.org/10.1007/s41324-017-0130-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-017-0130-6

Keywords

Navigation