Skip to main content
Log in

Open-source navigation system for tracking dissociated parts with multi-registration

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

During reconstructive surgery, knee and hip replacements, and orthognathic surgery, small misalignments in the pose of prosthesis and bones can lead to severe complications. Hence, the translational and angular accuracies are critical. However, traditional image-based surgical navigation lacks orientation data between structures, and imageless systems are unsuitable for cases of deformed anatomy. We introduce an open-source navigation system using a multiple registration approach that can track instruments, implants, and bones to precisely guide the surgeon in emulating a preoperative plan.

Methods

We derived the analytical error of our method and designed a set of phantom experiments to measure its precision and accuracy. Additionally, we trained two classification models to predict the system reliability from fiducial points and surface matching registration data. Finally, to demonstrate the procedure feasibility, we conducted a complete workflow for a real clinical case of a patient with fibrous dysplasia and anatomical misalignment of the right femur using plastic bones.

Results

The system is able to track the dissociated fragments of the clinical case and average alignment errors in the anatomical phantoms of \(1.08 \pm 0.68\)  mm and \(1.49 \pm 1.19^\circ \). While the fiducial-points registration showed satisfactory results given enough points and covered volume, we acknowledge that the surface refinement step is mandatory when attempting surface matching registrations.

Conclusion

We believe that our device could bring significant advantages for the personalized treatment of complex surgical cases and that its multi-registration attribute is convenient for intraoperative registration loosening cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. https://www.mitk.org.

  2. https://www.atracsys-measurement.com/products/sprytrack-180/.

  3. https://www.slicer.org/.

References

  1. Barbadoro P, Ensini A, Leardini A, D’Amato M, Feliciangeli A, Timoncini A, Amadei F, Belvedere C, Giannini S (2014) Tibial component alignment and risk of loosening in unicompartmental knee arthroplasty: a radiographic and radiostereometric study. Knee Surg Sports Traumatol Arthrosc 22(12):3157–3162. https://doi.org/10.1007/s00167-014-3147-6

    Article  CAS  PubMed  Google Scholar 

  2. Yang JH, Dahuja A, Kim JK, Yun SH, Yoon JR (2016) Alignment in knee flexion position during navigation-assisted total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 24(8):2422–2429. https://doi.org/10.1007/s00167-015-3589-5

    Article  PubMed  Google Scholar 

  3. Saragaglia D, Marques Da Silva B, Dijoux P, Cognault J, Gaillot J, Pailhé R (2017) Computerised navigation of unicondylar knee prostheses: from primary implantation to revision to total knee arthroplasty. Int Orthop 41(2):293–299. https://doi.org/10.1007/s00264-016-3293-1

    Article  PubMed  Google Scholar 

  4. Batash R, Rubin G, Lerner A, Shehade H, Rozen N, Rothem DE (2017) Computed navigated total knee arthroplasty compared to computed tomography scans. Knee 24(3):622–626. https://doi.org/10.1016/j.knee.2017.03.006

    Article  PubMed  Google Scholar 

  5. McClelland JA, Webster KE, Ramteke AA, Feller JA (2017) Total knee arthroplasty with computer-assisted navigation more closely replicates normal knee biomechanics than conventional surgery. Knee 24(3):651–656. https://doi.org/10.1016/j.knee.2016.12.009

    Article  PubMed  Google Scholar 

  6. Deep K, Shankar S, Mahendra A (2017) Computer assisted navigation in total knee and hip arthroplasty. SICOT-J 3:50. https://doi.org/10.1051/sicotj/2017034

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chang YJ, Lai JP, Tsai CY, Wu TJ, Lin SS (2020) Accuracy assessment of computer-aided three-dimensional simulation and navigation in orthognathic surgery (CASNOS). J Formos Med Assoc 119(3):701–711. https://doi.org/10.1016/j.jfma.2019.09.017

    Article  PubMed  Google Scholar 

  8. Shen SY, Yu Y, Zhang WB, Liu XJ, Peng X (2017) Angle-to-angle mandibular defect reconstruction with fibula flap by using a mandibular fixation device and surgical navigation. J Craniofacial Surg 28(6):1486–1491. https://doi.org/10.1097/SCS.0000000000003891

    Article  Google Scholar 

  9. Ritacco LE, Milano FE, Farfalli GL, Ayerza MA, Muscolo DL, Albergo JI, Aponte-Tinao LA (2017) virtual planning and allograft preparation guided by navigation for reconstructive oncologic surgery. JBJS Essent Surg Tech 7(4):e30. https://doi.org/10.2106/JBJS.ST.17.00001

    Article  PubMed  PubMed Central  Google Scholar 

  10. Takao M, Sakai T, Hamada H, Sugano N (2017) Error range in proximal femoral osteotomy using computer tomography-based navigation. Int J Comput Assist Radiol Surg 12(12):2087–2096. https://doi.org/10.1007/s11548-017-1577-6

    Article  PubMed  Google Scholar 

  11. Takao M, Hamada H, Sakai T, Sugano N (2018) Clinical application of navigation in the surgical treatment of a pelvic ring injury and acetabular fracture. Adv Exp Med Biol 1093:289–305. https://doi.org/10.1007/978-981-13-1396-7_22

    Article  PubMed  Google Scholar 

  12. Inaba Y, Kobayashi N, Ike H, Kubota S, Saito T (2016) The current status and future prospects of computer-assisted hip surgery. J Orthop Sci 21(2):107–115. https://doi.org/10.1016/j.jos.2015.10.023

    Article  PubMed  Google Scholar 

  13. Hayashi S, Hashimoto S, Matsumoto T, Takayama K, Shibanuma N, Ishida K, Nishida K, Kuroda R (2018) Computer-assisted surgery prevents complications during peri-acetabular osteotomy. Int Orthop 42(11):2555–2561. https://doi.org/10.1007/s00264-018-3906-y

    Article  PubMed  Google Scholar 

  14. Deep K, Picard F, Baines J (2016) Dynamic knee behaviour: does the knee deformity change as it is flexed-an assessment and classification with computer navigation. Knee Surg Sports Traumatol Arthrosc 24(11):3575–3583. https://doi.org/10.1007/s00167-016-4338-0

    Article  PubMed  Google Scholar 

  15. Hood B, Blum L, Holcombe SA, Wang SC, Urquhart AG, Goulet JA, Maratt JD (2017) Variation in optimal sagittal alignment of the femoral component in total knee arthroplasty. Orthopedics 40(2):102–106. https://doi.org/10.3928/01477447-20161108-04

    Article  PubMed  Google Scholar 

  16. Buller LT, McLawhorn AS, Romero JA, Sculco PK, Mayman DJ (2019) Accuracy and precision of acetabular component placement with imageless navigation in obese patients. J Arthroplasty 34(4):693–699. https://doi.org/10.1016/j.arth.2018.12.003

    Article  PubMed  Google Scholar 

  17. Chen X, Lin Y, Wang C, Shen G, Zhang S, Wang X (2011) A surgical navigation system for oral and maxillofacial surgery and its application in the treatment of old zygomatic fractures. Int J Med Robot Comput Assist Surg 7(1):42–50. https://doi.org/10.1002/rcs.367

    Article  Google Scholar 

  18. Block MS, Emery RW, Cullum DR, Sheikh A (2017) Implant placement is more accurate using dynamic navigation. J Oral Maxillofac Surg 75(7):1377–1386. https://doi.org/10.1016/j.joms.2017.02.026

    Article  PubMed  Google Scholar 

  19. Chen X, Xu L, Wang H, Wang F, Wang Q, Kikinis R (2017) Development of a surgical navigation system based on 3D Slicer for intraoperative implant placement surgery. Med Eng Phys 41:81–89. https://doi.org/10.1016/j.medengphy.2017.01.005

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sukegawa S, Kanno T, Furuki Y (2018) Application of computer-assisted navigation systems in oral and maxillofacial surgery. Jpn Dent Sci Rev 54(3):139–149. https://doi.org/10.1016/j.jdsr.2018.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li B, Zhang L, Sun H, Shen SG, Wang X (2014) A new method of surgical navigation for orthognathic surgery: Optical tracking guided free-hand repositioning of the maxillomandibular complex. J Craniofacial Surg 25(2):406–411. https://doi.org/10.1097/SCS.0000000000000673

    Article  Google Scholar 

  22. Chen X, Li Y, Xu L, Sun Y, Politis C, Jiang X (2021) A real time image-guided reposition system for the loosed bone graft in orthognathic surgery. Comput Assist Surg 26(1):1–8. https://doi.org/10.1080/24699322.2021.1874535

    Article  Google Scholar 

  23. Pflugi S, Liu L, Ecker TM, Schumann S, Cullmann JL, Siebenrock K, Zheng G (2016) A cost-effective surgical navigation solution for periacetabular osteotomy (PAO) surgery. Int J Comput Assist Radiol Surg 11(2):271–280. https://doi.org/10.1007/s11548-015-1267-1

    Article  PubMed  Google Scholar 

  24. Chen X, Xu L, Wang Y, Hao Y, Wang L (2016) Image-guided installation of 3D-printed patient-specific implant and its application in pelvic tumor resection and reconstruction surgery. Comput Methods Programs Biomed 125:66–78. https://doi.org/10.1016/j.cmpb.2015.10.020

    Article  PubMed  Google Scholar 

  25. Liu L, Siebenrock K, Nolte LP, Zheng G (2018) Computer-assisted planning, simulation, and navigation system for periacetabular osteotomy. Springer, Singapore, pp 143–145. https://doi.org/10.1007/978-981-13-1396-7_12

    Book  Google Scholar 

  26. Stražar K (2021) Computer assistance in hip preservation surgery-current status and introduction of our system. Int Orthop 45(4):897–905. https://doi.org/10.1007/s00264-020-04788-3

    Article  PubMed  Google Scholar 

  27. Mihalič R, Brumat P, Trebše R (2021) Bernese peri-acetabular osteotomy performed with navigation and patient-specific templates is a reproducible and safe procedure. Int Orthop 45(4):883–889. https://doi.org/10.1007/s00264-020-04897-z

    Article  PubMed  Google Scholar 

  28. Klemm M, Kirchner T, Gröhl J, Cheray D, Nolden M, Seitel A, Hoppe H, Maier-Hein L, Franz AM (2017) MITK-OpenIGTLink for combining open-source toolkits in real-time computer-assisted interventions. Int J Comput Assist Radiol Surg 12(3):351–361. https://doi.org/10.1007/s11548-016-1488-y

    Article  PubMed  Google Scholar 

  29. Yaniv Z (2015) Image-guided procedures, robotic interventions, and modeling. In: Webster RJ, Yaniv ZR (ed) Medical imaging, vol 9415. pp 542–550. https://doi.org/10.1117/12.2081348

  30. Besl P, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256. https://doi.org/10.1109/34.121791

  31. Giammalva GR, Musso S, Salvaggio G, Pino MA, Gerardi RM, Umana GE, Midiri M, Iacopino DG, Maugeri R (2021) Coplanar indirect-navigated intraoperative ultrasound: matching un-navigated probes with neuronavigation during neurosurgical procedures. How we do it. Oper Neurosurg (Hagerstown) 21(6):485–490. https://doi.org/10.1093/ons/opab316

    Article  PubMed  Google Scholar 

  32. Washabaugh EP, Krishnan C (2016) A low-cost system for coil tracking during transcranial magnetic stimulation. Restor Neurol Neurosci 34(2):337–346. https://doi.org/10.3233/RNN-150609

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang LC, Lee YH, Tsai CY, Wu TJ, Teng YY, Lai JP, Lin SS, Chang YJ (2021) Postsurgical stability of temporomandibular joint of skeletal class III patients treated with 2-jaw orthognathic surgery via computer-aided three-dimensional simulation and navigation in orthognathic surgery (CASNOS). Biomed Res Int 2021:1–10. https://doi.org/10.1155/2021/1563551

    Article  Google Scholar 

  34. Perwög M, Bardosi Z, Freysinger W (2018) Experimental validation of predicted application accuracies for computer-assisted (CAS) intraoperative navigation with paired-point registration. Int J Comput Assist Radiol Surg 13(3):425–441. https://doi.org/10.1007/s11548-017-1653-y

    Article  PubMed  Google Scholar 

  35. Sorriento A, Porfido MB, Mazzoleni S, Calvosa G, Tenucci M, Ciuti G, Dario P (2020) Optical and electromagnetic tracking systems for biomedical applications: a critical review on potentialities and limitations. IEEE Rev Biomed Eng 13:212–232. https://doi.org/10.1109/RBME.2019.2939091

    Article  PubMed  Google Scholar 

  36. Zeng G, Degonda C, Boschung A, Schmaranzer F, Gerber N, Siebenrock KA, Steppacher SD, Tannast M, Lerch TD (2021) Three-dimensional magnetic resonance imaging bone models of the hip joint using deep learning: dynamic simulation of hip impingement for diagnosis of intra- and extra-articular hip impingement. Orthop J Sports Med 9(12):1–11. https://doi.org/10.1177/23259671211046916

    Article  CAS  Google Scholar 

  37. Su AW, Hillen TJ, Eutsler EP, Bedi A, Ross JR, Larson CM, Clohisy JC, Nepple JJ (2019) Low-dose computed tomography reduces radiation exposure by 90 undergoing hip-preservation surgery. Arthrosc J Arthrosc Relat Surg 35(5):1385–1392. https://doi.org/10.1016/j.arthro.2018.11.013

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded through the Proyectos de Investigación Científica y Tecnológica Orientados grant (BID PICTO 2016 No. 0029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Mancino.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mancino, A.V., Milano, F.E., Risk, M.R. et al. Open-source navigation system for tracking dissociated parts with multi-registration. Int J CARS 18, 2167–2177 (2023). https://doi.org/10.1007/s11548-023-02853-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-023-02853-x

Keywords

Navigation