Skip to main content

Advertisement

Log in

Computer assistance in hip preservation surgery—current status and introduction of our system

  • Review
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Introduction

Preservation surgery of the hip with open or arthroscopic approach has always been challenging as complex 3-D anatomy and limited surgical access make intraoperative evaluation difficult. Recent advances in computer technology offer a wide range of innovative solutions with a goal to improve accuracy and safety of corrective procedures on human joints.

Method

The author critically reviews currently available literature in the field of computer assistance in hip preservation surgery. Basic features of unique planning software and navigation surgical system used in treatment of femoroacetabular impingement and hip dysplasia are introduced.

Results

Currently available software provides preoperative identification of hip deformity on CT-based 3-D model and planning of the surgical correction using kinematic protocols. Real-time intraoperative 3-D orientation is possible, and execution of surgical correction can be performed either with navigation of surgical tools or with printed templates. Computer assistance in hip preservation surgery is in the developing phase. First clinical experiences of its use in treatment of femoroacetabular impingement, hip dysplasia, hip tumors, and avascular necrosis of the femoral head are promising.

Conclusion

Computer assistance has been applied for treatment of several hip disorders. Technical advances are suggested and quality basic studies and clinical trials are encouraged for the novel technology to become more user friendly and widely accepted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All the illustrations presented in this article are author’s own material.

References

  1. Ganz R, Parvizi J, Beck M, Leunig M, Nötzli H, Siebenrock KA (2003) Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res 417:112–120. https://doi.org/10.1097/01.blo.0000096804.78689.c2

    Article  Google Scholar 

  2. Magrill ACL, Nakano N, Khanduja V (2017) Historical review of arthroscopic surgery of the hip. Int Orthop 41(10):1983–1994. https://doi.org/10.1007/s00264-017-3454-x

    Article  PubMed  Google Scholar 

  3. Maldonado DR, Perets I, Mu BH, Ortiz-Declet V, Chen AW, Lall AC, Domb BG (2018) Arthroscopic capsular plication in patients with labral tears and borderline dysplasia of the hip: analysis of risk factors for failure. Am J Sports Med 46(14):3446–3453. https://doi.org/10.1177/0363546518808033

    Article  PubMed  Google Scholar 

  4. Ganz R, Klaue K, Vinh TS, Mast JW (1988) A new periacetabular osteotomy for the treatment of hip dysplasias. Technique and preliminary results. Clin Orthop Relat Res 232:26–36

    Google Scholar 

  5. Azuma H, Taneda H (1989) Rotational acetabular osteotomy in congenital dysplasia of the hip. Int Orthop 13(1):21–28. https://doi.org/10.1007/BF00266718

    Article  CAS  PubMed  Google Scholar 

  6. Tönnis D, Behrens K, Tscharani F (1981) A modified technique of the triple pelvic osteotomy: early results. J Pediatr Orthop 1(3):241–249. https://doi.org/10.1097/01241398-198111000-00001

    Article  PubMed  Google Scholar 

  7. Shapira J, Kyin C, Go C, Rosinksy PJ, Maldonado DR, Lall AC, Domb BG (2020) Indications and outcomes of secondary hip procedures after failed hip arthroscopy. A systematic review. Arthroscopy 36(7):1992–2007. https://doi.org/10.1016/j.arthro.2020.02.028

    Article  PubMed  Google Scholar 

  8. Mansor Y, Perets I, Close MR, Mu BH, Domb BG (2018) In search of the spherical femoroplasty: cam overresection leads to inferior functional scores before and after revision hip arthroscopic surgery. Am J Sports Med 46(9):2061–2071. https://doi.org/10.1177/0363546518779064

    Article  PubMed  Google Scholar 

  9. Seijas R, Ares O, Sallent A, Cuscó X, Álvarez-Díaz P, Tejedor R, Cugat R (2017) Hip arthroscopy complications regarding surgery and early postoperative care: retrospective study and review of literature. Musculoskelet Surg 101(2):119–131. https://doi.org/10.1007/s12306-016-0444-x

    Article  CAS  PubMed  Google Scholar 

  10. Merz MK, Christoforetti JJ, Domb BG (2015) Femoral neck fracture after arthroscopic femoroplasty of the hip. Orthopedics 38(8):e696–e700. https://doi.org/10.3928/01477447-20150804-57

    Article  PubMed  Google Scholar 

  11. Allen D, Beaulé PE, Ramadan O, Doucette S (2009) Prevalence of associated deformities and hip pain in patients with cam-type femoroacetabular impingement. J Bone Joint Surg Br 91(5):589–594. https://doi.org/10.1302/0301-620X.91B5.22028

    Article  CAS  PubMed  Google Scholar 

  12. Nötzli HP, Wyss TF, Stoecklin CH, Schmid MR, Treiber K, Hodler J (2002) The contour of the femoral head-neck junction as a predictor for the risk of anterior impingement. J Bone Joint Surg Br 84(4):556–560. https://doi.org/10.1302/0301-620x.84b4.12014

    Article  PubMed  Google Scholar 

  13. Clohisy JC, Nunley RM, Otto RJ, Schoenecker PL (2007) The frog-leg lateral radiograph accurately visualized hip cam impingement abnormalities. Clin Orthop Relat Res 462:115–121. https://doi.org/10.1097/BLO.0b013e3180f60b53

    Article  PubMed  Google Scholar 

  14. Brunner A, Horisberger M, Herzog RF (2009) Evaluation of a computed tomography-based navigation system prototype for hip arthroscopy in the treatment of femoroacetabular cam impingement. Arthroscopy 25(4):382–391. https://doi.org/10.1016/j.arthro.2008.11.012

    Article  PubMed  Google Scholar 

  15. Pierannunzii L (2017) Pelvic posture and kinematics in femoroacetabular impingement: a systematic review. J Orthop Traumatol 18(3):187–196. https://doi.org/10.1007/s10195-016-0439-2

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nepple JJ, Wells J, Ross JR, Bedi A, Schoenecker PL, Clohisy JC (2017) Three patterns of acetabular deficiency are common in young adult patients with acetabular dysplasia. Clin Orthop Relat Res 475(4):1037–1044. https://doi.org/10.1007/s11999-016-5150-3

    Article  PubMed  Google Scholar 

  17. Kralj M, Mavcic B, Antolic V, Iglic A, Kralj-Iglic V (2005) The Bernese periacetabular osteotomy: clinical, radiographic and mechanical 7-15-year follow-up of 26 hips. Acta Orthop 76(6):833–840. https://doi.org/10.1080/17453670510045453

    Article  PubMed  Google Scholar 

  18. Mavcic B, Iglic A, Kralj-Iglic V, Brand RA, Vengust R (2008) Cumulative hip contact stress predicts osteoarthritis in DDH. Clin Orthop Relat Res 466(4):884–891. https://doi.org/10.1007/s11999-008-0145-3

    Article  PubMed  PubMed Central  Google Scholar 

  19. Larson CM, Wulf CA (2009) Intraoperative fluoroscopy for evaluation of bony resection during arthroscopic management of femoroacetabular impingement in the supine position. Arthroscopy 25(10):1183–1192. https://doi.org/10.1016/j.arthro.2009.07.020

    Article  PubMed  Google Scholar 

  20. Tannast M, Hanke MS, Zheng G, Steppacher SD, Siebenrock KA (2015) What are the radiographic reference values for acetabular under- and overcoverage? Clin Orthop Relat Res 473(4):1234–1246. https://doi.org/10.1007/s11999-014-4038-3

    Article  PubMed  Google Scholar 

  21. Ali M, Malviya A (2020) Complications and outcome after periacetabular osteotomy - influence of surgical approach. Hip Int 30(1):4–15. https://doi.org/10.1177/1120700019871195

    Article  PubMed  Google Scholar 

  22. Davey JP, Santore RF (1999) Complications of periacetabular osteotomy. Clin Orthop Relat Res 363:33–37

    Article  Google Scholar 

  23. Mechlenburg I, Daugaard H, Søballe K (2009) Radiation exposure to the orthopaedic surgeon during periacetabular osteotomy. Int Orthop 33(6):1747–1751. https://doi.org/10.1007/s00264-008-0681-1

    Article  PubMed  Google Scholar 

  24. Troelsen A, Elmengaard B, Rømer L, Søballe K (2008) Reliable angle assessment during periacetabular osteotomy with a novel device. Clin Orthop Relat Res 466(5):1169–1176. https://doi.org/10.1007/s11999-008-0133-7

    Article  PubMed  PubMed Central  Google Scholar 

  25. Akiho S, Kinoshita K, Matsunaga A, Ishii S, Seo H, Nishio J, Yamamoto T (2018) Incidence of delayed union one year after peri-acetabular osteotomy based on computed tomography. Int Orthop 42(5):1029–1034. https://doi.org/10.1007/s00264-017-3656-2

    Article  PubMed  Google Scholar 

  26. Xuyi W, Jianping P, Junfeng Z, Chao S, Yimin C, Xiaodong C (2016) Application of three-dimensional computerised tomography reconstruction and image processing technology in individual operation design of developmental dysplasia of the hip patients. Int Orthop 40(2):255–265. https://doi.org/10.1007/s00264-015-2994-1

    Article  PubMed  Google Scholar 

  27. Su AW, Hillen TJ, Eutsler EP, Bedi A, Ross JR, Larson CM, Clohisy JC, Nepple JJ (2019) Low-dose computed tomography reduces radiation exposure by 90 % compared with traditional computed tomography among patients undergoing hip-preservation surgery. Arthroscopy 35(5):1385–1392. https://doi.org/10.1016/j.arthro.2018.11.013

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lerch TD, Degonda C, Schmaranzer F, Todorski I, Cullmann-Bastian J, Zheng G, Siebenrock KA, Tannast M (2019) Patient-specific 3-D magnetic resonance imaging-based dynamic simulation of hip impingement and range of motion can replace 3-D computed tomography-based simulation for patients with femoroacetabular impingement: implications for planning open hip preservation surgery and hip arthroscopy. Am J Sports Med 47(12):2966–2977. https://doi.org/10.1177/0363546519869681

    Article  PubMed  Google Scholar 

  29. Hooper JM, Mays RR, Poultsides LA, Castaneda PG, Muir JM, Kamath AF (2019) Periacetabular osteotomy using an imageless computer-assisted navigation system: a new surgical technique. J Hip Preserv Surg 6(4):426–431. https://doi.org/10.1093/jhps/hnz058

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bächler R, Bunke H, Nolte LP (2001) Restricted surface matching--numerical optimization and technical evaluation. Comput Aided Surg 6(3):143–152. https://doi.org/10.1002/igs.1017

    Article  PubMed  Google Scholar 

  31. Swank ML, Lehnert (2005) Orthopedic personnel roles in the OR for computer assisted total knee arthroplasty. AORN J 82(4):631–634, 637-643. https://doi.org/10.1016/s0001-2092(06)60032-x

    Article  CAS  PubMed  Google Scholar 

  32. Kendoff D, Citak M, Stueber V, Nelson L, Pearle AD, Boettner F (2011) Feasibility of a navigated registration technique in FAI surgery. Arch Orthop Trauma Surg 131(2):167–172. https://doi.org/10.1007/s00402-010-1114-3

    Article  PubMed  Google Scholar 

  33. Audenaert E, Smet B, Pattyn C, Khanduja V (2012) Imageless versus image-based registration in navigated arthroscopy of the hip: a cadaver-based assessment. J Bone Joint Surg Br 94(5):624–629. https://doi.org/10.1302/0301-620X.94B5.28627

    Article  CAS  PubMed  Google Scholar 

  34. Stražar K, Vovk U, Kreuh D, Pekarović D, Drobnič M (2016) Computer navigation during arthroscopic osteochondroplasty in patients with CAM femoroacetabular impingement. J Hip Preserv Surg 3(5):S1–S52. https://doi.org/10.1093/jhps/hnw030

    Article  Google Scholar 

  35. Van Houcke J, Khanduja V, Nakano N, Krekel P, Pattyn C, Audenaert E (2017) Accuracy of navigated cam resection in femoroacetabular impingement: A randomised controlled trial. Int J Med Robot 13(4):e1839. https://doi.org/10.1002/rcs.1839

    Article  Google Scholar 

  36. Langlotz F, Stucki M, Bächler R, Scheer C, Ganz R, Berlemann U, Nolte LP (1997) The first twelve cases of computer assisted periacetabular osteotomy. Comput Aided Surg 2(6):317–326. https://doi.org/10.1002/(SICI)1097-0150(1997)2:6<317::AID-IGS1>3.0.CO;2-2

    Article  CAS  PubMed  Google Scholar 

  37. Hsieh PH, Chang YH, Shih CH (2006) Image-guided periacetabular osteotomy: computer-assisted navigation compared with the conventional technique: a randomized study of 36 patients followed for 2 years. Acta Orthop 77(4):591–597. https://doi.org/10.1080/17453670610012656

    Article  PubMed  Google Scholar 

  38. Liu L, Siebenrock K, Nolte LP, Zheng G (2018) Computer-assisted planning, simulation, and navigation system for periacetabular osteotomy. Adv Exp Med Biol 1093:143–155. https://doi.org/10.1007/978-981-13-1396-7_12

    Article  PubMed  Google Scholar 

  39. Liu L, Zheng G, Bastian JD, Keel MJ, Nolte LP, Siebenrock KA, Ecker TM (2016) Periacetabular osteotomy through the pararectus approach: technical feasibility and control of fragment mobility by a validated surgical navigation system in a cadaver experiment. Int Orthop 40(7):1389–1396. https://doi.org/10.1007/s00264-015-2892-6

    Article  PubMed  Google Scholar 

  40. De Raedt S, Mechlenburg I, Stilling M, Rømer L, Murphy RJ, Armand M, Lepistö J, de Bruijne M, Søballe K (2018) Reliability of computer-assisted periacetabular osteotomy using a minimally invasive approach. Int J Comput Assist Radiol Surg 13(12):2021–2028. https://doi.org/10.1007/s11548-018-1802-y

    Article  PubMed  Google Scholar 

  41. Imai H, Kamada T, Miyawaki J, Maruishi A, Mashima N, Miura H (2020) Outcomes of computer-assisted peri-acetabular osteotomy compared with conventional osteotomy in hip dysplasia. Int Orthop 44(6):1055–1061. https://doi.org/10.1007/s00264-020-04578-x

    Article  PubMed  Google Scholar 

  42. Lepistö J, Armand M, Armiger RS (2008) Periacetabular osteotomy in adult hip dysplasia - developing a computer aided real-time biomechanical guiding system (BGS). Suom Ortoped Traumatol 31(2):186–190

    PubMed  PubMed Central  Google Scholar 

  43. Zhou Y, Kang X, Li C, Xu X, Li R, Wang J, Li W, Luo H, Lu S (2016) Application of a 3-dimensional printed navigation template in Bernese periacetabular osteotomies: a cadaveric study. Medicine (Baltimore) 95(50):e5557. https://doi.org/10.1097/MD.0000000000005557

    Article  Google Scholar 

  44. Young PS, Bell SW, Mahendra A (2015) The evolving role of computer-assisted navigation in musculoskeletal oncology. Bone Joint J 97-B(2):258–264. https://doi.org/10.1302/0301-620X.97B2.34461

    Article  CAS  PubMed  Google Scholar 

  45. Theopold J, Armonies S, Pieroh P, Hepp P, Roth A (2020) Nontraumatic avascular necrosis of the femoral head : arthroscopic and navigation-supported core decompression. Oper Orthop Traumatol 32(2):107–115. https://doi.org/10.1007/s00064-019-00643-w

    Article  PubMed  Google Scholar 

  46. Cho HS, Oh JH, Han I, Kim HS (2012) The outcomes of navigation-assisted bone tumour surgery: minimum three-year follow-up. J Bone Joint Surg Br 94(10):1414–1420. https://doi.org/10.1302/0301-620X.94B10.28638

    Article  CAS  PubMed  Google Scholar 

  47. Abraham JA, Kenneally B, Amer K, Geller DS (2018) Can navigation-assisted surgery help achieve negative margins in resection of pelvic and sacral tumors? Clin Orthop Relat Res 476(3):499–508. https://doi.org/10.1007/s11999.0000000000000064

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fujiwara T, Sree DV, Stevenson J, Kaneuchi Y, Parry M, Tsuda Y, Le Nail LR, Medellin RM, Grimer R, Jeys L (2020) Acetabular reconstruction with an ice-cream cone prosthesis following resection of pelvic tumors: does computer navigation improve surgical outcome? J Surg Oncol 121(7):1104–1114. https://doi.org/10.1002/jso.25882

    Article  PubMed  Google Scholar 

  49. Liu X, Liu Y, Lu W, Liao S, Du Q, Deng Z, Lu W (2019) Combined application of modified three-dimensional printed anatomic templates and customized cutting blocks in pelvic reconstruction after pelvic tumor resection. J Arthroplasty 34(2):338–345.e1. https://doi.org/10.1016/j.arth.2018.10.001

    Article  PubMed  Google Scholar 

  50. Roth A, Beckmann J, Bohndorf K, Heiß C, Jäger M, Landgraeber S, Maus U, Nöth U, Peters KM, Rader C, Reppenhagen S, Smolenski U, Kopp I, Tingart M (2018) Update of the German S3 guideline on atraumatic femoral head necrosis in adults (German). Orthopade 47(9):757–769. https://doi.org/10.1007/s00132-018-3620-x

    Article  PubMed  Google Scholar 

  51. Ukaj S, Hernigou P, Auregan JC (2019) Targeting core decompression and cell therapy injection of hip osteonecrosis with computer-assisted navigation. Surg Technol Int 35:410–416

    PubMed  Google Scholar 

  52. Maru T, Imanishi J, Torigoe T, Saita K, Kadono Y, Yazawa Y (2020) Navigation-assisted surgery for chondroblastoma arising in the femoral head: A case report. Int J Surg Case Rep 70:8–12. https://doi.org/10.1016/j.ijscr.2020.03.049

    Article  PubMed  PubMed Central  Google Scholar 

  53. Takao M, Sakai T, Hamada H, Sugano N (2017) Error range in proximal femoral osteotomy using computer tomography-based navigation. Int J Comput Assist Radiol Surg 12(12):2087–2096. https://doi.org/10.1007/s11548-017-1577-6

    Article  PubMed  Google Scholar 

  54. Zheng P, Xu P, Yao Q, Tang K, Lou Y (2017) 3D-printed navigation template in proximal femoral osteotomy for older children with developmental dysplasia of the hip. Sci Rep 7:44993. https://doi.org/10.1038/srep44993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wells J, Nepple JJ, Crook K, Ross JR, Bedi A, Schoenecker P, Clohisy JC (2017) Femoral morphology in the dysplastic hip: Three-dimensional characterizations with CT. Clin Orthop Relat Res 475(4):1045–1054. https://doi.org/10.1007/s11999-016-5119-2

    Article  PubMed  Google Scholar 

  56. Albers CE, Steppacher SD, Ganz R, Tannast M, Siebenrock KA (2013) Impingement adversely affects 10-year survivorship after periacetabular osteotomy for DDH. Clin Orthop Relat Res 471(5):1602–1614. https://doi.org/10.1007/s11999-013-2799-8

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lerch TD, Todorski IAS, Steppacher SD, Schmaranzer F, Werlen SF, Siebenrock KA, Tannast M (2018) Prevalence of femoral and acetabular version abnormalities in patients with symptomatic hip disease: A controlled study of 538 hips. Am J Sports Med 46(1):122–134. https://doi.org/10.1177/0363546517726983

    Article  PubMed  Google Scholar 

  58. Bi B, Zhang S, Zhao Y (2019) The effect of robot-navigation-assisted core decompression on early stage osteonecrosis of the femoral head. J Orthop Surg Res 14(1):375. https://doi.org/10.1186/s13018-019-1437-x

    Article  PubMed  PubMed Central  Google Scholar 

  59. Işik C, Apaydin N, Açar HI, Cay N, Firat A, Bozkurt M (2014) Robotic hip arthroscopy: a cadaveric feasibility study. Acta Orthop Traumatol Turc 48(2):207–211. https://doi.org/10.3944/AOTT.2014.3273

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The author (KS) declares his full contribution regarding preparation the manuscript. The content of the review article was author’s own idea. He performed the literature search and drafted and critically revised the work.

Corresponding author

Correspondence to Klemen Stražar.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Code availability

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stražar, K. Computer assistance in hip preservation surgery—current status and introduction of our system. International Orthopaedics (SICOT) 45, 897–905 (2021). https://doi.org/10.1007/s00264-020-04788-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-020-04788-3

Keywords

Navigation