Skip to main content
Log in

Deep learning approaches for automated classification and segmentation of head and neck cancers and brain tumors in magnetic resonance images: a meta-analysis study

  • Review Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Deep learning (DL) has led to widespread changes in automated segmentation and classification for medical purposes. This study is an attempt to use statistical methods to analyze studies related to segmentation and classification of head and neck cancers (HNCs) and brain tumors in MRI images.

Methods

PubMed, Web of Science, Embase, and Scopus were searched to retrieve related studies published from January 2016 to January 2020. Studies that evaluated the performance of DL-based models in the segmentation, and/or classification and/or grading of HNCs and/or brain tumors were included. Selected studies for each analysis were statistically evaluated based on the diagnostic performance metrics.

Results

The search results retrieved 1,664 related studies, of which 30 studies were eligible for meta-analysis. The overall performance of DL models for the complete tumor in terms of the pooled Dice score, sensitivity, and specificity was 0.8965 (95% confidence interval (95% CI): 0.76–0.9994), 0.9132 (95% CI: 0.71–0.994) and 0.9164 (95% CI: 0.78–1.00), respectively. The DL methods achieved the highest performance for classifying three types of glioma, meningioma, and pituitary tumors with overall accuracies of 96.01%, 99.73%, and 96.58%, respectively. Stratification of glioma tumors by high and low grading revealed overall accuracies of 94.32% and 94.23% for the DL methods, respectively.

Conclusion

Based on the obtained results, we can acknowledge the significant ability of DL methods in the mentioned applications. Poor reporting in these studies challenges the analysis process, so it is recommended that future studies report comprehensive results based on different metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, Brenner H, Dicker DJ, Chimed-Orchir O, Dandona R, Dandona L, Fleming T, Forouzanfar MH, Hancock J, Hay RJ, Hunter-Merrill R, Huynh C, Hosgood HD, Johnson CO, Jonas JB, Khubchandani J, Kumar GA, Kutz M, Lan Q, Larson HJ, Liang X, Lim SS, Lopez AD, MacIntyre MF, Marczak L, Marquez N, Mokdad AH, Pinho C, Pourmalek F, Salomon JA, Sanabria JR, Sandar L, Sartorius B, Schwartz SM, Shackelford KA, Shibuya K, Stanaway J, Steiner C, Sun J, Takahashi K, Vollset SE, Vos T, Wagner JA, Wang H, Westerman R, Zeeb H, Zoeckler L, Abd-Allah F, Ahmed MB, Alabed S, Alam NK, Aldhahri SF, Alem G, Alemayohu MA, Ali R, Al-Raddadi R, Amare A, Amoako Y, Artaman A, Asayesh H, Atnafu N, Awasthi A, Saleem HB, Barac A, Bedi N, Bensenor I, Berhane A, Bernabé E, Betsu B, Binagwaho A, Boneya D, Campos-Nonato I, Castañeda-Orjuela C, Catalá-López F, Chiang P, Chibueze C, Chitheer A, Choi JY, Cowie B, Damtew S, Das Neves J, Dey S, Dharmaratne S, Dhillon P, Ding E, Driscoll T, Ekwueme D, Endries AY, Farvid M, Farzadfar F, Fernandes J, Fischer F, Gebremedhin TT, Gebru A, Gopalani S, Hailu A, Horino M, Horita N, Husseini A, Huybrechts I, Inoue M, Islami F, Jakovljevic M, James S, Javanbakht M, Jee SH, Kasaeian A, Kedir MS, Khader YS, Khang YH, Kim D, Leigh J, Linn S, Lunevicius R, El Razek HMA, Malekzadeh R, Malta DC, Marcenes W, Markos D, Melaku YA, Meles KG, Mendoza W, Mengiste DT, Meretoja TJ, Miller TR, Mohammad KA, Mohammadi A, Mohammed S, Moradi-Lakeh M, Nagel G, Nand D, Le Nguyen Q, Nolte S, Ogbo FA, Oladimeji KE, Oren E, Pa M, Park EK, Pereira DM, Plass D, Qorbani M, Radfar A, Rafay A, Rahman M, Rana SM, Søreide K, Satpathy M, Sawhney M, Sepanlou SG, Shaikh MA, She J, Shiue I, Shore HR, Shrime MG, So S, Soneji S, Stathopoulou V, Stroumpoulis K, Sufiyan MB, Sykes BL, Tabarés-Seisdedos R, Tadese F, Tedla BA, Tessema GA, Thakur JS, Tran BX, Ukwaja KN, Uzochukwu BSC, Vlassov VV, Weiderpass E, Wubshet Terefe M, Yebyo HG, Yimam HH, Yonemoto N, Younis MZ, Yu C, Zaidi Z, Zaki MES, Zenebe ZM, Murray CJL, Naghavi M (2017) Global, Regional, and National Cancer Incidence, Mortality Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-years for 32 Cancer Groups, 1990 to 2015 A Systematic Analysis for the Global Burden of Disease Study. JAMA oncology 3(4):524–548

    Article  PubMed  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018 GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  3. Argirion I, Zarins KR, Defever K, Suwanrungruang K, Chang JT, Pongnikorn D, Chitapanarux I, Sriplung H, Vatanasapt P, Rozek LS (2019) Temporal changes in head and neck cancer incidence in thailand suggest changing oropharyngeal epidemiology in the region. J Global oncol 5:1–11. https://doi.org/10.1200/jgo.18.00219

    Article  Google Scholar 

  4. Mehanna H, Paleri V, West CM, Nutting C (2010) Head and neck cancer–Part 1: epidemiology, presentation, and prevention. BMJ (Clinical Research Ed) 341:c4684. https://doi.org/10.1136/bmj.c4684

    Article  CAS  Google Scholar 

  5. Harrison LB, Sessions RB, Hong WK (2009) Head and neck cancer: a multidisciplinary approach. Lippincott Williams & Wilkins

    Google Scholar 

  6. Konings H, Stappers S, Geens M, De Winter BY, Lamote K, van Meerbeeck JP, Specenier P, Vanderveken OM, Ledeganck KJ (2020) A literature review of the potential diagnostic biomarkers of head and neck neoplasms. Front Oncol 10:1020

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kies MS, Bennett CL, Vokes EE (2001) Locally advanced head and neck cancer. Curr Treat Options Oncol 2(1):7–13

    Article  CAS  PubMed  Google Scholar 

  8. Al-Sarraf M (2002) Treatment of locally advanced head and neck cancer: historical and critical review. Cancer Control 9(5):387–399

    Article  PubMed  Google Scholar 

  9. Vries N, van de Heyning P, Leemans CR (2013) Leerboek keel-neus-oorheelkunde en hoofd-halschirurgie. Bohn Stafleu van Loghum Springer Media

  10. Yeh S-A Radiotherapy for head and neck cancer. In: Seminars in plastic surgery, 2010. vol 2. Thieme Medical Publishers, p 127

  11. Baxi SS, Pinheiro LC, Patil SM, Pfister DG, Oeffinger KC, Elkin EB (2014) Causes of death in long-term survivors of head and neck cancer. Cancer 120(10):1507–1513

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ferlito A, Shaha AR, Silver CE, Rinaldo A, Mondin V (2001) Incidence and sites of distant metastases from head and neck cancer. ORL 63(4):202–207

    Article  CAS  PubMed  Google Scholar 

  13. Claus EB, Walsh KM, Wiencke JK, Molinaro AM, Wiemels JL, Schildkraut JM, Bondy ML, Berger M, Jenkins R, Wrensch M (2015) Survival and low-grade glioma: the emergence of genetic information. Neurosurg Focus 38(1):E6

    Article  PubMed  PubMed Central  Google Scholar 

  14. Drevelegas A (2002) Embryonal tumors. In: Ayache N, Duncan J (eds) Imaging of brain tumors with histological correlations. Springer, pp 147–154

    Chapter  Google Scholar 

  15. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    Article  Google Scholar 

  16. Brown RW, Cheng Y-CN, Haacke EM, Thompson MR, Venkatesan R (2014) Magnetic resonance imaging: physical principles and sequence design. Wiley

    Book  Google Scholar 

  17. Yasmin M, Mohsin S, Sharif M, Raza M, Masood S (2012) Brain image analysis: a survey. World Appl Sci J 19(10):1484–1494

    Google Scholar 

  18. Yasmin M, Sharif M, Masood S, Raza M, Mohsin S (2012) Brain image enhancement-A survey. World Appl Sci J 17(9):1192–1204

    Google Scholar 

  19. Nida N, Sharif M, Khan MUG, Yasmin M, Fernandes SL (2016) A framework for automatic colorization of medical imaging. IIOAB J 7:202–209

    Google Scholar 

  20. Román KL-L, Ocaña MIG, Urzelai NL, Ballester MÁG, Oliver IM (2020) Medical Image Segmentation Using Deep Learning. In: Deep Learning in Healthcare. Springer, pp 17–31

  21. Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Chen Y-W, Jain LC (eds) International conference on medical image computing and computer-assisted intervention, 2016. Springer, pp 424-432

  22. Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78

    Article  PubMed  Google Scholar 

  23. LeCun Y (2015) LeNet-5, Convolutional neural networks. http://yann.lecun.com/exdb/lenet 20 (5):14

  24. Wang W, Liang D, Chen Q, Iwamoto Y, Han X-H, Zhang Q, Hu H, Lin L, Chen Y-W (2020) Medical image classification using deep learning. In: Chen Y-W, Jain LC (eds) Deep learning in healthcare: paradigms and applications. Springer, Cham, pp 33–51. https://doi.org/10.1007/978-3-030-32606-7_3

    Chapter  Google Scholar 

  25. Cheng J, Huang W, Cao S, Yang R, Yang W, Yun Z, Wang Z, Feng Q (2015) Enhanced performance of brain tumor classification via tumor region augmentation and partition. PLoS ONE 10(10):e0140381

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ertosun MG, Rubin DL Automated grading of gliomas using deep learning in digital pathology images: A modular approach with ensemble of convolutional neural networks. In: AMIA Annual Symposium Proceedings, 2015. American Medical Informatics Association, p 1899

  27. Afshar P, Plataniotis KN, Mohammadi A Capsule networks for brain tumor classification based on MRI images and coarse tumor boundaries. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019. IEEE, pp 1368–1372

  28. Anaraki AK, Ayati M, Kazemi F (2019) Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms. Biocybernet Biomed Engg 39(1):63–74

    Article  Google Scholar 

  29. Alex V, Vaidhya K, Thirunavukkarasu S, Kesavadas C, Krishnamurthi G (2017) Semisupervised learning using denoising autoencoders for brain lesion detection and segmentation. J Med Imag 4(4):041311

    Article  Google Scholar 

  30. Zhuge Y, Krauze AV, Ning H, Cheng JY, Arora BC, Camphausen K, Miller RW (2017) Brain tumor segmentation using holistically nested neural networks in MRI images. Med Phys 44(10):5234–5243

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhao X, Wu Y, Song G, Li Z, Zhang Y, Fan Y (2018) A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Med Image Anal 43:98–111

    Article  PubMed  Google Scholar 

  32. Chen H, Qin Z, Ding Y, Tian L, Qin Z (2019) Brain tumor segmentation with deep convolutional symmetric neural network. Neurocomputing 392:305–313

    Article  Google Scholar 

  33. Hussain S, Anwar SM 2017 Majid M Brain tumor segmentation using cascaded deep convolutional neural network. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, pp 1998–2001

  34. Hussain S, Anwar SM, Majid M (2018) Segmentation of glioma tumors in brain using deep convolutional neural network. Neurocomputing 282:248–261

    Article  Google Scholar 

  35. Hasan SK, Linte CA 2018 A modified U-Net convolutional network featuring a Nearest-neighbor Re-sampling-based Elastic-Transformation for brain tissue characterization and segmentation. In: 2018 IEEE Western New York Image and Signal Processing Workshop (WNYISPW), IEEE, pp 1–5

  36. Yang T, Song J, Li L (2019) A deep learning model integrating SK-TPCNN and random forests for brain tumor segmentation in MRI. Biocybernet Biomed Eng 39(3):613–623

    Article  Google Scholar 

  37. Wu Y, Zhao Z, Wu W, Lin Y, Wang M (2019) Automatic glioma segmentation based on adaptive superpixel. BMC Med Imag 19(1):1–14

    Article  Google Scholar 

  38. Sun L, Zhang S, Chen H, Luo L (2019) Brain tumor segmentation and survival prediction using multimodal MRI scans with deep learning. Front Neurosci 13:810

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pereira S, Pinto A, Alves V, Silva CA (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imag 35(5):1240–1251

    Article  Google Scholar 

  40. Li H, Li A, Wang M (2019) A novel end-to-end brain tumor segmentation method using improved fully convolutional networks. Comput Biol Med 108:150–160

    Article  PubMed  Google Scholar 

  41. Kuzina A, Egorov E, Burnaev E (2019) Bayesian generative models for knowledge transfer in mri semantic segmentation problems. Front Neurosci 13:844

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cui S, Mao L, Jiang J, Liu C, Xiong S (2018) Automatic semantic segmentation of brain gliomas from MRI images using a deep cascaded neural network. J Healthcare Eng 2018:14. https://doi.org/10.1155/2018/4940593

    Article  Google Scholar 

  43. Amin J, Sharif M, Anjum MA, Raza M, Bukhari SAC (2020) Convolutional neural network with batch normalization for glioma and stroke lesion detection using MRI. Cogn Syst Res 59:304–311

    Article  Google Scholar 

  44. Amin J, Sharif M, Yasmin M, Saba T, Anjum MA, Fernandes SL (2019) A new approach for brain tumor segmentation and classification based on score level fusion using transfer learning. J Med Syst 43(11):326. https://doi.org/10.1007/s10916-019-1453-8

    Article  PubMed  Google Scholar 

  45. Alqazzaz S, Sun X, Yang X, Nokes L (2019) Automated brain tumor segmentation on multi-modal MR image using SegNet. Comput Vis Media 5(2):209–219. https://doi.org/10.1007/s41095-019-0139-y

    Article  Google Scholar 

  46. Wang Y, Li C, Zhu T, Zhang J (2019) Multimodal brain tumor image segmentation using WRN-PPNet. Comput Med Imag Graph 75:56–65

    Article  Google Scholar 

  47. Michael Mahesh K, Arokia Renjit J (2020) Multiclassifier for severity-level categorization of glioma tumors using multimodal magnetic resonance imaging brain images. Int J Imag Syst Technol 30(1):234–251

    Article  Google Scholar 

  48. Am KV, Rajendran V (2019) Glioma tumor grade identification using artificial intelligent techniques. J Med Syst 43(5):113

    Article  Google Scholar 

  49. Sultan HH, Salem NM, Al-Atabany W (2019) Multi-classification of brain tumor images using deep neural network. IEEE Access 7:69215–69225

    Article  Google Scholar 

  50. Khawaldeh S, Pervaiz U, Rafiq A, Alkhawaldeh RS (2018) Noninvasive grading of glioma tumor using magnetic resonance imaging with convolutional neural networks. Appl Sci 8(1):27

    Article  Google Scholar 

  51. Ma Z, Wu X, Song Q, Luo Y, Wang Y, Zhou J (2018) Automated nasopharyngeal carcinoma segmentation in magnetic resonance images by combination of convolutional neural networks and graph cut. Exp Therapeut Med 16(3):2511–2521

    Google Scholar 

  52. Mlynarski P, Delingette H, Criminisi A, Ayache N (2019) Deep learning with mixed supervision for brain tumor segmentation. J Med Imag 6(3):034002

    Article  Google Scholar 

  53. Savareh BA, Emami H, Hajiabadi M, Azimi SM, Ghafoori M (2019) Wavelet-enhanced convolutional neural network: a new idea in a deep learning paradigm. Biomed Eng Biomed Technik 64(2):195–205

    Article  Google Scholar 

  54. Cahall DE, Rasool G, Bouaynaya NC, Fathallah-Shaykh HM (2019) Inception modules enhance brain tumor segmentation. Front Comput Neurosci 13:44

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang L, Wang S, Chen R, Qu X, Chen Y, Huang S, Liu C (2019) Nested dilation networks for brain tumor segmentation based on magnetic resonance imaging. Front Neurosci 13:285

    Article  PubMed  PubMed Central  Google Scholar 

  56. Li Z, Wang Y, Yu J, Shi Z, Guo Y, Chen L, Mao Y (2017) Low-grade glioma segmentation based on CNN with fully connected CRF. J Healthcare Eng 2017:12. https://doi.org/10.1155/2017/9283480

    Article  Google Scholar 

  57. Deepak S, Ameer P (2019) Brain tumor classification using deep CNN features via transfer learning. Comput Biol Med 111:103345

    Article  CAS  PubMed  Google Scholar 

  58. Ma Z, Zhou S, Wu X, Zhang H, Yan W, Sun S, Zhou J (2019) Nasopharyngeal carcinoma segmentation based on enhanced convolutional neural networks using multi-modal metric learning. Phys Med Biol 64(2):025005

    Article  PubMed  Google Scholar 

  59. Wang Y, Zu C, Hu G, Luo Y, Ma Z, He K, Wu X, Zhou J (2018) Automatic tumor segmentation with deep convolutional neural networks for radiotherapy applications. Neural Process Lett 48(3):1323–1334

    Article  Google Scholar 

  60. Li Q, Xu Y, Chen Z, Liu D, Feng S-T, Law M, Ye Y, Huang B (2018) Tumor segmentation in contrast-enhanced magnetic resonance imaging for nasopharyngeal carcinoma: deep learning with convolutional neural network. BioMed Res Int 2018:7. https://doi.org/10.1155/2018/9128527

    Article  Google Scholar 

  61. Lin L, Dou Q, Jin Y-M, Zhou G-Q, Tang Y-Q, Chen W-L, Su B-A, Liu F, Tao C-J, Jiang N (2019) Deep learning for automated contouring of primary tumor volumes by MRI for nasopharyngeal carcinoma. Radiology 291(3):677–686

    Article  PubMed  Google Scholar 

  62. Haque IRI, Neubert J (2020) Deep learning approaches to biomedical image segmentation. Info Med Unlock 18:100297

    Article  Google Scholar 

  63. Hesamian MH, Jia W, He X, Kennedy P (2019) Deep learning techniques for medical image segmentation: achievements and challenges. J Digit Imag 32(4):582–596

    Article  Google Scholar 

  64. Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big Data 6(1):60

    Article  Google Scholar 

  65. Pan SJ, Yang Q (2009) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359

    Article  Google Scholar 

  66. Wang M, Deng W (2018) Deep visual domain adaptation: a survey. Neurocomputing 312:135–153

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Kermanshah University of Medical Sciences, Kermanshah, Iran, for their support, cooperation and assistance throughout the period of study.

Funding

This work was supported by the Kermanshah University of Medical Sciences [Grant numbers 990688].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Rostampour.

Ethics declarations

Conflicts of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 796 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badrigilan, S., Nabavi, S., Abin, A.A. et al. Deep learning approaches for automated classification and segmentation of head and neck cancers and brain tumors in magnetic resonance images: a meta-analysis study. Int J CARS 16, 529–542 (2021). https://doi.org/10.1007/s11548-021-02326-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-021-02326-z

Keywords

Navigation