Skip to main content

Advertisement

Log in

A New Approach for Brain Tumor Segmentation and Classification Based on Score Level Fusion Using Transfer Learning

  • Image & Signal Processing
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Brain tumor is one of the most death defying diseases nowadays. The tumor contains a cluster of abnormal cells grouped around the inner portion of human brain. It affects the brain by squeezing/ damaging healthy tissues. It also amplifies intra cranial pressure and as a result tumor cells growth increases rapidly which may lead to death. It is, therefore desirable to diagnose/ detect brain tumor at an early stage that may increase the patient survival rate. The major objective of this research work is to present a new technique for the detection of tumor. The proposed architecture accurately segments and classifies the benign and malignant tumor cases. Different spatial domain methods are applied to enhance and accurately segment the input images. Moreover Alex and Google networks are utilized for classification in which two score vectors are obtained after the softmax layer. Further, both score vectors are fused and supplied to multiple classifiers along with softmax layer. Evaluation of proposed model is done on top medical image computing and computer-assisted intervention (MICCAI) challenge datasets i.e., multimodal brain tumor segmentation (BRATS) 2013, 2014, 2015, 2016 and ischemic stroke lesion segmentation (ISLES) 2018 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

∇:

Sharp edges

⊗:

Convolutional

ε:

Smoothing

Si :

Resultant image

T :

Threshold

\( \mathcal{R} \), :

Opening

λ:

Erosion

Ѱ:

Dilation

L:

Layer

F:

Kernels bank

S:

Stride

CC:

Channel

Col:

Column

β(Inputi):

Softmax

N:

Number of layers

FInput :

Kernel vector of ith neuron

e :

Probability

References

  1. Amin, J., Sharif, M., Yasmin, M., and Fernandes, S.L., A distinctive approach in brain tumor detection and classification using MRI. Pattern Recognition Letters, 2017.

  2. Bauer, S., Wiest, R., Nolte, L.-P., Reyes, M.J., PiM, Biology. A survey of MRI-based medical image analysis for brain tumor studies. 58 (13):R97, 2013.

  3. Rajinikanth, V., Satapathy, S. C., Fernandes, S. L., and Nachiappan, S., Entropy based segmentation of tumor from brain MR images–a study with teaching learning based optimization. Pattern Recogn. Lett. 94:87–95, 2017.

    Article  Google Scholar 

  4. Upadhyay, N., and AJTBjor, W., Conventional MRI evaluation of gliomas. 84 (special_issue_2):S107-S111, 2011.

  5. Nida, N., Sharif, M., Khan, M. U. G., Yasmin, M., and Fernandes, S. L., A framework for automatic colorization of medical imaging. IIOAB J. 7:202–209, 2016.

    Google Scholar 

  6. Gordillo, N., Montseny, E., and Sobrevilla, P.J., State of the art survey on MRI brain tumor segmentation. 31 (8):1426–1438, 2013.

  7. Zhang, L., Song, M., Liu, X., Bu, J., and Chen, C.J.S.P., Fast multi-view segment graph kernel for object classification. 93 (6):1597–1607, 2013.

  8. Adams, R., and Bischof, L.J., ITopa, intelligence m. Seeded region growing. 16 (6):641–647, 1994.

  9. Han, J., Quan, R., Zhang, D., and Nie, F.J.I., ToIP Robust object co-segmentation using background prior. 27 (4):1639–1651, 2018.

  10. Raja, N.S.M., Fernandes, S., Dey, N., Satapathy, S.C., and Rajinikanth, V., Contrast enhanced medical MRI evaluation using Tsallis entropy and region growing segmentation. Journal of Ambient Intelligence and Humanized Computing:1–12, 2018.

  11. Rajinikanth, V., Fernandes, S.L., Bhushan, B., and Sunder, N.R., Segmentation and analysis of brain tumor using Tsallis entropy and regularised level set. Proceedings of 2nd international conference on micro-electronics, electromagnetics and telecommunications. Springer, 313–321, 2018.

  12. Deng, W., Xiao, W., Deng, H., and Liu, J., MRI brain tumor segmentation with region growing method based on the gradients and variances along and inside of the boundary curve. Biomedical engineering and informatics (BMEI), 2010 3rd international conference on, IEEE. 393–396, 2010.

  13. Zhang, L., Han, Y., Yang, Y., Song, M., Yan, S., and Tian, QJIToIP., Discovering discriminative graphlets for aerial image categories recognition. 22 (12):5071–5084, 2013.

  14. Menze, B.H., Van Leemput, K., Lashkari, D., Weber, M.-A., Ayache, N., and Golland, P., A generative model for brain tumor segmentation in multi-modal images. International conference on medical image computing and computer-assisted intervention, Springer. 151–159, 2010.

  15. Cheng, G., Zhou, P., and Han, JJIToIP., Duplex metric learning for image set classification. 27 (1):281–292, 2018.

  16. Lee, C.-H., Wang, S., Murtha, A., Brown, M.R., and Greiner, R., Segmenting brain tumors using pseudo–conditional random fields. International conference on medical image computing and computer-assisted intervention. Springer. 359–366, 2008.

  17. Zhang, C., Fang, M., and Nie, H., Brain tumor segmentation using fully convolutional networks from magnetic resonance imaging. J. Med. Imag. Health Inform. 8(8):1546–1553, 2018.

    Article  Google Scholar 

  18. Ghosh, A., Maso, F.D., Roig, M., Mitsis, G.D., and Boudrias, M.-H., Deep semantic architecture with discriminative feature visualization for neuroimage analysis. arXiv preprint arXiv:180511704, 2018.

  19. Zhao, L., and Jia K., Multiscale cnns for brain tumor segmentation and diagnosis. Computational and mathematical methods in medicine 2016.

  20. Cui, Z., Yang, J., and Qiao, Y., Brain MRI segmentation with patch-based CNN approach. Control conference (CCC), 2016 35th Chinese. IEEE. 7026–7031, 2016.

  21. Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.-M., and Larochelle, H., Brain tumor segmentation with deep neural networks. Med. Image Anal. 35:18–31, 2017.

    Article  Google Scholar 

  22. Yamashita, R., Nishio, M., Do, R.K.G., and Togashi, K., Convolutional neural networks: An overview and application in radiology. Insights into imaging:1–19, 2018.

  23. Abdel-Maksoud, E., Elmogy, M., and Al-Awadi, R., Brain tumor segmentation based on a hybrid clustering technique. Egypt Inform. J. 16(1):71–81, 2015.

    Article  Google Scholar 

  24. Kamnitsas, K., Ledig, C., Newcombe, V. F., Simpson, J. P., Kane, A. D., Menon, D. K., Rueckert, D., and Glocker, B., Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Analy. 36:61–78, 2017.

    Article  Google Scholar 

  25. Amin, J., Sharif, M., Yasmin, M., and Fernandes, S. L., Big data analysis for brain tumor detection: Deep convolutional neural networks. Fut. Gen. Comput. Syst. 87:290–297, 2018.

    Article  Google Scholar 

  26. Dong, H., Yang, G., Liu, F., Mo, Y., Guo, Y., Automatic brain tumor detection and segmentation using U-net based fully convolutional networks. Annual conference on medical image understanding and analysis. Springer, 506–517, 2017.

  27. Kamnitsas, K., Ferrante, E., Parisot, S., Ledig, C., Nori, A. V., Criminisi, A., Rueckert, D., and Glocker, B., DeepMedic for brain tumor segmentation. In: International workshop on Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries. Springer, 2016, 138–149.

  28. Bernal, J., Kushibar, K., Asfaw, D. S., Valverde, S., Oliver, A., Martí, R., and Lladó, X., Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: A review. Artificial intelligence in medicine, 2018.

  29. Isensee, F., Petersen, J., Klein, A., Zimmerer, D., Jaeger, P.F., Kohl, S., Wasserthal, J., Koehler, G., Norajitra, T., and Wirkert, S., Nnu-net: Self-adapting framework for u-net-based medical image segmentation. arXiv preprint arXiv:180910486, 2018.

  30. Hai, J., Qiao, K., Chen, J., Tan, H., Xu, J., Zeng, L., Shi, D., and Yan, B., Fully Convolutional DenseNet with Multiscale Context for Automated Breast Tumor Segmentation. Journal of Healthcare Engineering, 2019.

  31. Satapathy, S. C., Fernandes, S. L., and Lin, H., Stroke lesion segmentation and analysis using entropy/Otsu’s function–a study with social group optimization. Curr. Bioinform. 14(4):305–313, 2019.

    Article  CAS  Google Scholar 

  32. Alex, Krizhevsky., Sutskever, Ilya., and Hinton, GE., ImageNet Classification with Deep Convolutional Neural Networks. Advances in neural information processing systems, 2012.

  33. Zhou, B., Khosla, A., Lapedriza, A., Torralba, A., and Oliva, A., Places: An image database for deep scene understanding, (2016).

  34. Raza, M., Sharif, M., Yasmin, M., Khan, M. A., Saba, T., and Fernandes, S. L., Appearance based pedestrians’ gender recognition by employing stacked auto encoders in deep learning. Fut. Gen. Comput. Syst. 88:28–39, 2018.

    Article  Google Scholar 

  35. Amin, J., Sharif, M., Yasmin, M., Ali, H., and Fernandes, S. L., A method for the detection and classification of diabetic retinopathy using structural predictors of bright lesions. J. Comput. Sci. 19:153–164, 2017.

    Article  Google Scholar 

  36. Shah, J.H., Sharif, M., Yasmin, M., and Fernandes, S.L., Facial expressions classification and false label reduction using LDA and threefold SVM. Pattern Recognition Letters, 2017.

  37. Sharif, M., Khan, M.A., Faisal, M., Yasmin, M., and Fernandes, S.L., A framework for offline signature verification system: Best features selection approach. Pattern Recognition Letters, 2018.

  38. Liaqat, A., Khan, M. A., Shah, J. H., Sharif, M., Yasmin, M., and Fernandes, S. L., Automated ulcer and bleeding classification from WCE images using multiple features fusion and selection. J. Mech. Med. Biol. 18(04):1850038, 2018.

    Article  Google Scholar 

  39. Ansari, G. J., Shah, J. H., Yasmin, M., Sharif, M., and Fernandes, S. L., A novel machine learning approach for scene text extraction. Fut. Gen. Comput. Syst. 87:328–340, 2018.

    Article  Google Scholar 

  40. Naqi, S., Sharif, M., Yasmin, M., and Fernandes, S. L., Lung nodule detection using polygon approximation and hybrid features from CT images. Curr. Med. Imag. Rev. 14(1):108–117, 2018.

    Article  Google Scholar 

  41. Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., and Wiest, R., The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imag. 34(10):1993, 2015.

    Article  Google Scholar 

  42. Kistler, M., Bonaretti, S., Pfahrer, M., Niklaus, R., and Büchler, P., The virtual skeleton database: An open access repository for biomedical research and collaboration. Journal of medical Internet research 15 (11), 2013.

  43. Maier, O., Menze, B. H., von der Gablentz, J., Häni, L., Heinrich, M. P., Liebrand, M., Winzeck, S., Basit, A., Bentley, P., and Chen, L., ISLES 2015-a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med. Image Analy. 35:250–269, 2017.

    Article  Google Scholar 

  44. Zhao, X., Wu, Y., Song, G., Li, Z., Zhang, Y., and Fan, Y., A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Med. Image Analy. 43:98–111, 2018.

    Article  Google Scholar 

  45. Bhagat, P., and Choudhary, P., Multiclass segmentation of brain tumor from MRI images. In: Applications of artificial intelligence techniques in engineering. Springer, 543–553, 2019.

  46. Reza, S.M., and Mays, R., Iftekharuddin KM multi-fractal detrended texture feature for brain tumor classification. Proceedings of SPIE--the International Society for Optical Engineering. NIH Public Access, 2015.

  47. Chen, S., Ding, C., and Liu, M., Dual-force convolutional neural networks for accurate brain tumor segmentation. Pattern Recogn. 88:90–100, 2019.

    Article  Google Scholar 

  48. Ellwaa, A., Hussein, A., AlNaggar, E., Zidan, M., Zaki, M., Ismail, M.A., and Ghanem, N.M., Brain tumor segmantation using random forest trained on iteratively selected patients. International workshop on Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries. Springer, 129–137, 2016.

  49. Van Der Kouwe, A., Brain tumor segmentation from multi modal MR images using fully convolutional neural network. Proceedings of the 6th MICCAI BraTS challenge, 2017.

  50. Amorim, P.H.A.C.V.S., Escudero, G.G., Oliveira, D.D.C., Pereira, S.M., Santos, H.M., and Scussel, A.A., 3D U-nets for brain tumor segmentation in MICCAI 2017 BraTS challenge proceedings of the 6th MICCAI BraTS Challenge, 2017.

  51. Simon Andermatt, S.P., and Cattin, P., Multi-dimensional gated recurrent units for brain tumor segmentation. Proceedings of the 6th MICCAI BraTS Challenge (2017), 1984.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javeria Amin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Image & Signal Processing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amin, J., Sharif, M., Yasmin, M. et al. A New Approach for Brain Tumor Segmentation and Classification Based on Score Level Fusion Using Transfer Learning. J Med Syst 43, 326 (2019). https://doi.org/10.1007/s10916-019-1453-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-019-1453-8

Keywords

Navigation