Liu J-J, Leppert JT, Maxwell BG, Panousis P, Chung BI (2014) Trends and perioperative outcomes for laparoscopic and robotic nephrectomy using the National Surgical Quality Improvement Program (NSQIP) database. Urol Oncol Semin Orig Investig 32:473–479. https://doi.org/10.1016/j.urolonc.2013.09.012
Article
Google Scholar
Patel HD, Mullins JK, Pierorazio PM, Jayram G, Cohen JE, Matlaga BR, Allaf ME (2013) Trends in renal surgery: robotic technology is associated with increased use of partial nephrectomy. J Urol 189:1229–1235. https://doi.org/10.1016/j.juro.2012.10.024
Article
PubMed
Google Scholar
Rassweiler J, Goezen AS (2018) Laparoscopic partial nephrectomy in the era of robotic surgery: there is a role! Minerva Urol Nefrol 70:6–8. https://doi.org/10.23736/S0393-2249.17.03039-9
Article
PubMed
Google Scholar
Bertolo RG, Fiori C, Piramide F, Amparore D, Barrera M, Sardo D, Veltri A, Porpiglia F (2018) Assessment of the relationship between renal volume and renal function after minimally-invasive partial nephrectomy: the role of computed tomography and nuclear renal scan. Minerva Urol Nefrol 70:509–517. https://doi.org/10.23736/S0393-2249.18.03140-5
Article
PubMed
Google Scholar
Bertolo RG, Zargar H, Autorino R, Fiori C, Kaouk JH, Russo P, Thompson RH, Porpiglia F (2017) Estimated glomerular filtration rate, renal scan and volumetric assessment of the kidney before and after partial nephrectomy: a review of the current literature. Minerva Urol Nefrol 69:539–547. https://doi.org/10.23736/S0393-2249.17.02865-X
Article
PubMed
Google Scholar
Hughes-Hallett A, Mayer EK, Pratt P, Mottrie A, Darzi A, Vale J (2015) The current and future use of imaging in urological robotic surgery: a survey of the European Association of Robotic Urological Surgeons. Int J Med Robot Comput Assist Surg MRCAS 11:8–14. https://doi.org/10.1002/rcs.1596
Article
Google Scholar
Rosset A, Spadola L, Ratib O (2004) OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging 17:205–216. https://doi.org/10.1007/s10278-004-1014-6
Article
PubMed
PubMed Central
Google Scholar
Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30:1323–1341. https://doi.org/10.1016/j.mri.2012.05.001
Article
PubMed
PubMed Central
Google Scholar
Yushkevich PA, Gao Y, Gerig G (2016) ITK-SNAP: an interactive tool for semi-automatic segmentation of multi-modality biomedical images. In: 2016 38th Annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp 3342–3345
Wake N, Rude T, Kang SK, Stifelman MD, Borin JF, Sodickson DK, Huang WC, Chandarana H (2017) 3D printed renal cancer models derived from MRI data: application in pre-surgical planning. Abdom Radiol 42:1501–1509. https://doi.org/10.1007/s00261-016-1022-2
Article
Google Scholar
Porpiglia F, Bertolo R, Checcucci E, Amparore D, Autorino R, Dasgupta P, Wiklund P, Tewari A, Liatsikos E, Fiori C (2017) Development and validation of 3D printed virtual models for robot-assisted radical prostatectomy and partial nephrectomy: urologists’ and patients’ perception. World J Urol 36:1–7. https://doi.org/10.1007/s00345-017-2126-1
Article
Google Scholar
Weston MJ (2017) Virtual special issue: renal masses. Clin Radiol 72:826–827. https://doi.org/10.1016/j.crad.2017.06.011
Article
CAS
PubMed
Google Scholar
Hughes-Hallett A, Pratt P, Mayer E, Martin S, Darzi A, Vale J (2014) Image guidance for all—TilePro display of 3-dimensionally reconstructed images in robotic partial nephrectomy. Urology 84:237–243. https://doi.org/10.1016/j.urology.2014.02.051
Article
PubMed
Google Scholar
Porpiglia F, Fiori C, Checcucci E, Amparore D, Bertolo R (2018) Hyperaccuracy three-dimensional reconstruction is able to maximize the efficacy of selective clamping during robot-assisted partial nephrectomy for complex renal masses. Eur Urol. https://doi.org/10.1016/j.eururo.2017.12.027
Article
PubMed
Google Scholar
Han K, Bohnen JD, Peponis T, Martinez M, Nandan AR, Yeh DD, Lee J, Demoya M, Velmahos G, Kaafarani HMA (2017) The surgeon as the second victim? Results of the Boston Intraoperative Adverse Events Surgeons’ Attitude (BISA) study. J Am Coll Surg 224:1048–1056. https://doi.org/10.1016/j.jamcollsurg.2016.12.039
Article
PubMed
Google Scholar
Berger L, Hyde E, Cardoso J, Ourselin S (2017) A self-aware sampling scheme to efficiently train fully convolutional networks for semantic segmentation. arXiv Prepr 1:1–12
Lasser MS, Doscher M, Keehn A, Chernyak V, Garfein E, Ghavamian R (2012) Virtual surgical planning: a novel aid to robot-assisted laparoscopic partial nephrectomy. J Endourol 26:1372–1379. https://doi.org/10.1089/end.2012.0093
Article
PubMed
Google Scholar
Wake N, Chandarana H, Huang WC, Taneja SS, Rosenkrantz AB (2016) Application of anatomically accurate, patient-specific 3D printed models from MRI data in urological oncology. Clin Radiol 71:610–614. https://doi.org/10.1016/j.crad.2016.02.012
Article
CAS
PubMed
Google Scholar
Raman A, Kuusk T, Hyde ER, Berger LU, Bex A, Mumtaz F (2017) Robotic-assisted laparoscopic partial nephrectomy in a horseshoe kidney: a case report and review of the literature. Urology. https://doi.org/10.1016/j.urology.2017.12.003
Article
PubMed
Google Scholar
Jones DB, Sung R, Weinberg C, Korelitz T, Andrews R (2016) Three-dimensional modeling may improve surgical education and clinical practice. Surg Innov 23:189–195. https://doi.org/10.1177/1553350615607641
Article
PubMed
Google Scholar
von Rundstedt FC, Scovell JM, Agrawal S, Zaneveld J, Link RE (2017) Utility of patient-specific silicone renal models for planning and rehearsal of complex tumour resections prior to robot-assisted laparoscopic partial nephrectomy. BJU Int 119:598–604. https://doi.org/10.1111/bju.13712
Article
CAS
Google Scholar
Thompson S, Totz J, Song Y, Johnsen S, Stoyanov D, Ourselin S, Gurusamy K, Schneider C, Davidson B, Hawkes D, Clarkson MJ (2015) Accuracy validation of an image guided laparoscopy system for liver resection. 941509. https://doi.org/10.1117/12.2080974
Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78. https://doi.org/10.1016/j.media.2016.10.004
Article
PubMed
Google Scholar
Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. Med Image Comput Comput Interv. https://doi.org/10.1007/978-3-319-24574-4_28
Article
Google Scholar
Wolz R, Chu C, Misawa K, Mori K, Rueckert D (2012) Multi-organ abdominal CT segmentation using hierarchically weighted subject-specific atlases. Med Image Comput Comput Assist Interv 15:10–17. https://doi.org/10.1007/978-3-642-33415-3_2
Article
PubMed
Google Scholar
Wang G, Li W, Ourselin S, Vercauteren T (2017) Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: International MICCAI Brainlesion workshop. Springer, Cham, pp 178–190. https://doi.org/10.1007/978-3-319-75238-9_16
Chapter
Google Scholar
Schneider M, Hirsch S, Weber B, Székely G, Menze BH (2015) Joint 3-D vessel segmentation and centerline extraction using oblique Hough forests with steerable filters. Med Image Anal 19:220–249. https://doi.org/10.1016/j.media.2014.09.007
Article
PubMed
Google Scholar
Zuluaga MA, Rodionov R, Nowell M, Achhala S, Zombori G, Mendelson AF, Cardoso MJ, Miserocchi A, McEvoy AW, Duncan JS, Ourselin S (2015) Stability, structure and scale: improvements in multi-modal vessel extraction for SEEG trajectory planning. Int J Comput Assist Radiol Surg 10:1227–1237. https://doi.org/10.1007/s11548-015-1174-5
Article
PubMed
PubMed Central
Google Scholar
Wang G, Zuluaga MA, Pratt R, Aertsen M, Doel T, Klusmann M, David AL, Deprest J, Vercauteren T, Ourselin S (2016) Dynamically balanced online random forests for interactive scribble-based segmentation. Springer, Berlin
Book
Google Scholar
Seymour NE, Gallagher AG, Roman SA, O’Brien MK, Bansal VK, Andersen DK, Satava RM (2002) Virtual reality training improves operating room performance: results of a randomized, double-blinded study. Ann Surg 236:458–463. https://doi.org/10.1097/01.sla.0000028969.51489.b4
(discussion 463-4)
Article
PubMed
PubMed Central
Google Scholar
Sullivan GM, Artino AR (2013) Analyzing and interpreting data from Likert-type scales. J Grad Med Educ 5:541–542. https://doi.org/10.4300/JGME-5-4-18
Article
PubMed
PubMed Central
Google Scholar