Skip to main content
Log in

Augmented marker tracking for peri-acetabular osteotomy surgery

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Objective

To develop a hybrid augmented marker-based navigation system for acetabular reorientation during peri-acetabular osteotomy (PAO).

Methods

The system consists of a tracking unit attached to the patient’s pelvis, augmented marker attached to the acetabular fragment and a host computer to do all the computations and visualization. The augmented marker is comprised of an external planar Aruco marker facing toward the tracking unit and an internal inertial measurement unit (IMU) to measure its orientation. The orientation output from the IMU is sent to the host computer. The tracking unit streams a live video of the augmented marker to the host computer, where the planar marker is detected and its pose is estimated. A Kalman filter-based sensor fusion combines the output from marker tracking and the IMU. We validated the proposed system using a plastic bone study and a cadaver study. Every time, we compared the inclination and anteversion values measured by the proposed system to those from a previously developed optical tracking-based navigation system.

Results

Mean absolute differences for inclination and anteversion were 1.34 (\(\pm \,1.50\)) and 1.21 (\(\pm \, 1.07\))\(^\circ \), respectively, for the cadaver study. Mean absolute differences were 1.63 (\(\pm \,1.48\)) and 1.55 (\(\pm \,1.49\))\(^\circ \) for inclination and anteversion for the plastic bone study. In both validation studies, very strong correlations were observed.

Conclusion

We successfully demonstrated the feasibility of our system to measure the acetabular orientation during PAO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Albers CE, Steppacher SD, Ganz R, Tannast M, Siebenrock KA (2013) Impingement adversely affects 10-year survivorship after periacetabular osteotomy for DDH hip. Clin Orthop Relat Res 471(5):1602–1614

    Article  PubMed  PubMed Central  Google Scholar 

  2. Behrens A, Grimm J, Gross S, Aach T (2011) Inertial navigation system for bladder endoscopy. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS pp 5376–5379

  3. Beller S, Eulenstein S, Lange T, Hünerbein M, Schlag PM (2009) Upgrade of an optical navigation system with a permanent electromagnetic position control: a first step towards "navigated control" for liver surgery. J Hepato Biliary Pancreat Surg 16(2):165–170

    Article  Google Scholar 

  4. Bugbee WD, Kermanshahi AY, Munro MM, McCauley JC, Copp SN (2014) Accuracy of a hand-held surgical navigation system for tibial resection in total knee arthroplasty. Knee 21(6):1225–1228. https://doi.org/10.1016/j.knee.2014.09.006

    Article  PubMed  Google Scholar 

  5. Cao Z, Su S, Chen H, Tang H, Zhou Y, Wang Z (2016) Pose measurement of Anterior Pelvic Plane based on inertial measurement unit in total hip replacement surgeries. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS 2016-Octob, pp. 5801–5804

  6. Claasen GC, Martin P, Picard F (2011) High-bandwidth low-latency tracking using optical and inertial sensors. In: ICARA 2011—Proceedings of the 5th international conference on automation, robotics and applications, pp 366–371

  7. Crockarell J, Trousdale RT, Cabanela ME, Berry DJ (1999) Early experience and results with the periacetabular osteotomy.pdf. Clin Orthop Relat Res 363:45–53

    Article  Google Scholar 

  8. Desseaux A, Graf P, Dubrana F, Marino R, Clavé A (2016) Radiographic outcomes in the coronal plane with iASSIST versus optical navigation for total knee arthroplasty: a preliminary case-control study. Orthop Traumatolo Surg Res 102(3):363–368. https://doi.org/10.1016/j.otsr.2016.01.018

    Article  CAS  Google Scholar 

  9. Freeman RM, Julier SJ, Steed AJ (2007) A method for predicting marker tracking error. In: 2007 6th IEEE and ACM international symposium on mixed and augmented reality, ISMAR, pp 157–160

  10. Garrido-Jurado S, Muñoz-Salinas R, Madrid-Cuevas FJ, Marín-Jiménez MJ (2014) Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognit 47(6):2280–2292

    Article  Google Scholar 

  11. Gharaibeh MA, Solayar GN, Solayar GN, Harris IA, Chen DB, MacDessi SJ (2017) Accelerometer-based, portable navigation (kneealign) vs conventional instrumentation for total knee arthroplasty: a prospective randomized comparative trial. J Arthroplast 32(3):777–782. https://doi.org/10.1016/j.arth.2016.08.025

    Article  Google Scholar 

  12. Goh GSH, Liow MHL, Lim WSR, Tay DKJ, Yeo SJ, Tan MH (2016) Accelerometer-based navigation is as accurate as optical computer navigation in restoring the joint line and mechanical axis after total knee arthroplasty. A prospective matched study. J Arthroplast 31(1):92–97. https://doi.org/10.1016/j.arth.2015.06.048

    Article  Google Scholar 

  13. Goh GSH, Liow MHL, Tay DKJ, Lo NN, Yeo SJ, Tan MH (2017) Accelerometer-based and computer-assisted navigation in total knee arthroplasty: a reduction in mechanical axis outliers does not lead to improvement in functional outcomes or quality of life when compared to conventional total knee arthroplasty. J Arthroplast pp. 1–7. http://linkinghub.elsevier.com/retrieve/pii/S0883540317307891

  14. Haid M, Kamil M, Chobtrong T, Guenes E (2013) Machine-vision-based and inertial-sensor-supported navigation system for the minimal invasive surgery. In: AMA conferences—SENSOR

  15. Hipp J, Sugano N, Millis M, Murphy S (1999) Planning acetabular redirection osteotomies based on joint contact pressures. Clin Orthop Relat Res 364:134–143

    Article  Google Scholar 

  16. Hsieh PH, Chang YH, Shih CH (2006) Image-guided periacetabular osteotomy: computer-assisted navigation compared with the conventional technique: a randomized study of 36 patients followed for 2 years. Acta Orthop 77(4):591–597

    Article  PubMed  Google Scholar 

  17. Huang EH, Copp SN, Bugbee WD (2015) Accuracy of a handheld accelerometer-based navigation system for femoral and tibial resection in total knee arthroplasty. J Arthroplast 30(11):1906–1910. https://doi.org/10.1016/j.arth.2015.05.055

    Article  Google Scholar 

  18. Jaeger M, Westhoff B, Wild A, Krauspe R (2004) Computer-assisted periacetabular triple osteotomy for treatment of dysplasia of the hip. Zeitschrift fur Orthopadie und Ihre Grenzgebiete 142(1):51–59

    Article  Google Scholar 

  19. Jolles BM, Genoud P, Hoffmeyer P (2004) Computer-assisted cup placement techniques in total hip arthroplasty improve accuracy of placement. Clin Orthop Relat Res 426:174–9

    Article  Google Scholar 

  20. Jost GF, Walti J, Mariani L, Cattin P (2016) A novel approach to navigated implantation of S-2 alar iliac screws using inertial measurement units. J Neurosurg Spine 24(3), 447–53. http://www.ncbi.nlm.nih.gov/pubmed/26565762

  21. Jost GF, Walti J, Mariani L, Schaeren S, Cattin P (2017) Inertial measurement unit-assisted implantation of thoracic, lumbar, and sacral pedicle screws improves precision of a freehand technique. World Neurosurg 103:11–18. https://doi.org/10.1016/j.wneu.2017.02.079

    Article  PubMed  Google Scholar 

  22. Kalman RE (1960) A new approach to linear filtering and prediction problems. J Basic Eng 82(1):35–45

    Article  Google Scholar 

  23. Katanacho M, De la Cadena W, Engel S (2016) Surgical navigation with QR codes. Curr Dir Biomed Eng 2(1):355–358

    Google Scholar 

  24. Kim SJ, Jeong MH, Lee JJ, Lee JY, Kim KG, You BJ, Oh SR (2010) Robot head-eye calibration using the minimum variance method. In: 2010 IEEE International Conference on Robotics and Biomimetics, ROBIO 2010, pp. 1446–1451

  25. Kruecker J, Viswanathan A, Borgert J, Glossop N, Yang Y, Wood BJ (2005) An electro-magnetically tracked laparoscopic ultrasound for multi-modality minimally invasive surgery. Int Congr Ser 1281:746–751

    Article  Google Scholar 

  26. Langlotz F, Bächler R, Berlemann U, Nolte LP, Ganz R (1998) Computer assistance for pelvic osteotomies. Clin Orthop Relat Res 354(354):92–102

    Article  Google Scholar 

  27. Langlotz F, Stucki M, Bächler R, Scheer C, Ganz R, Berlemann U, Nolte LP (1997) The first twelve cases of computer assisted periacetabular osteotomy. Comput Aided Surg 2(6):317–326

    Article  CAS  PubMed  Google Scholar 

  28. Lerch TD, Steppacher SD, Liechti EF, Siebenrock KA, Tannast M (2016) Periazetabuläre Osteotomie nach Ganz. Der Orthopäde 45(8):687–694

    Article  CAS  PubMed  Google Scholar 

  29. Lerch TD, Steppacher SD, Liechti EF, Tannast M, Siebenrock KA (2017) One-third of hips after periacetabular osteotomy survive 30 years with good clinical results, no progression of arthritis, or conversion to THA. Clin Orthop Relat Res 475(4):1154–1168

    Article  PubMed  Google Scholar 

  30. Liu L, Ecker T, Schumann S, Siebenrock K, Nolte P, Zheng G, Periacetabular I, The M (2013) Cadaveric validation of a novel planning and navigation system for peri-acetabular osteotomy ( PAO ). In: CURAC pp 26–29

  31. Liu L, Ecker T, Schumann S, Siebenrock K, Nolte L, Zheng G (2014) Computer assisted planning and navigation of periacetabular osteotomy with range of motion optimization. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 8674 LNCS(PART 2), pp 643–650

  32. Mahfouz MR, Kuhn MJ, To G, Fathy AE (2009) Integration of UWB and wireless pressure mapping in surgical navigation. IEEE Trans Microw Theory Tech 57(10):2550–2564

    Article  Google Scholar 

  33. Murphy R, Armiger R, Lepistö J, Armand M (2016) Clinical evaluation of a biomechanical guidance system for periacetabular osteotomy. J Orthop Surg Res (36). https://doi.org/10.1186/s13018-016-0372-3

  34. Murphy RJ, Armiger RS, Lepistö J, Mears SC, Taylor RH, Armand M (2015) Development of a biomechanical guidance system for periacetabular osteotomy. Int J Comput Assist Radiol Surg 10(4):497–508

    Article  PubMed  Google Scholar 

  35. Myers SR, Eijer H, Ganz R (1999) Anterior femoroacetabular impingement after periacetabular osteotomy. Clin Orthop Relat Res 363:93–9

    Article  Google Scholar 

  36. Nam D, Jerabek SA, Haughom B, Cross MB, Reinhardt KR, Mayman DJ (2011) Radiographic analysis of a hand-held surgical navigation system for tibial resection in total knee arthroplasty. J Arthroplast 26(8):1527–1533. https://doi.org/10.1016/j.arth.2011.01.012

    Article  Google Scholar 

  37. Nam D, Nawabi DH, Cross MB, Heyse TJ, Mayman DJ (2012) Accelerometer-based computer navigation for performing the distal femoral resection in total knee arthroplasty. J Arthroplast 27(9):1717–1722. https://doi.org/10.1016/j.arth.2012.02.007

    Article  Google Scholar 

  38. Nam D, Weeks KD, Reinhardt KR, Nawabi DH, Cross MB, Mayman DJ (2013) Accelerometer-based, portable navigation vs imageless, large-console computer-assisted navigation in total knee arthroplasty. A comparison of radiographic results. J Arthroplast 28(2):255–261. https://doi.org/10.1016/j.arth.2012.04.023

    Article  Google Scholar 

  39. Nogler M, Kessler O, Prassl A, Donnelly B, Streicher R, Sledge JB, Krismer M (2004) Reduced variability of acetabular cup positioning with use of an imageless navigation system. Clin Orthop Relat Res 426:159–163

    Article  Google Scholar 

  40. O’Donovan KJ, Kamnik R, O’Keeffe DT, Lyons GM (2007) An inertial and magnetic sensor based technique for joint angle measurement. J Biomech 40(12):2604–2611

    Article  PubMed  Google Scholar 

  41. Park FC, Martin BJ (1994) Robot sensor calibration: solving AX=XB on the Euclidean group. IEEE Trans Robot Autom 10(5):717–721

    Article  Google Scholar 

  42. Pflugi S, Liu L, Ecker TM, Schumann S, Larissa Cullmann J, Siebenrock K, Zheng G (2016) A cost-effective surgical navigation solution for periacetabular osteotomy (PAO) surgery. Int J Comput ssist Radiol Surg 11(2):271–280

    Article  Google Scholar 

  43. Pflugi S, Vasireddy R, Liu L, Ecker TM, Lerch T, Siebenrock K, Zheng G (2016) A cost-effective navigation system for peri-acetabular osteotomy surgery. Int Conf Med Imaging Virtual Real 9805:84–95

    Google Scholar 

  44. Rambach JR (2016) Learning to fuse : a deep learning approach to visual-inertial camera pose estimation. In: IEEE international symposium on mixed and augmented reality (ISMAR), pp. 71–76

  45. Rebello KJ (2004) Applications of MEMS in surgery. Proc IEEE 92(1):43–55

    Article  CAS  Google Scholar 

  46. Ren H, Kazanzides P (2014) Attitude tracking using an integrated inertial and optical navigation system for hand-held surgical instruments. In: International conference on control, automation and systems, pp. 290–293

  47. Ryan JA, Jamali AA, Bargar WL (2010) Accuracy of computer navigation for acetabular component placement in THA. Clin Orthop Relat Res 468(1):169–177

    Article  PubMed  Google Scholar 

  48. Schweighofer G, Pinz A (2006) Robust pose estimation from a planar target. IEEE Trans Pattern Anal Mach Intell 28(12):2024–2030

    Article  PubMed  Google Scholar 

  49. Steppacher SD, Lerch TD, Gharanizadeh K, Liechti EF, Werlen SF, Puls M, Tannast M, Siebenrock KA (2014) Size and shape of the lunate surface in different types of pincer impingement: theoretical implications for surgical therapy. Osteoarthr Cartil 22(7):951–958

    Article  CAS  PubMed  Google Scholar 

  50. Steppacher SD, Tannast M, Ganz R, Siebenrock KA (2008) Mean 20-year followup of bernese periacetabular osteotomy. Clin Orthop Relat Res 466(7):1633–1644

  51. Su S, Zhou Y, Wang Z, Chen H (2017) Monocular vision–and IMU-based system for prosthesis pose estimation during total hip replacement surgery. IEEE Trans Biomed Circuits Syst 11(3):1–10

  52. Tibor LM, Sink EL (2012) Periacetabular osteotomy for hip preservation. Orthop Clin North Am 43(3):343–357

    Article  PubMed  Google Scholar 

  53. Walti J, Jost GF, Cattin PC (2014) A new cost-effective approach to pedicular screw placement. MICCAI AE-CAI - Lecture Notes in Computer Science 8678 (Lecture Notes in Computer Science), pp 90–97

  54. Zhang H, Banovac F, Glossop N, Wood BJ, Lindisch D (2006) Electromagnetic tracking for abdominal interventions in computer aided surgery. Comput Aided Surg 11(3):127–136

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards

Funding This study was funded by the Swiss National Science Foundation (Grant number \(205321\_163224\)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio Pflugi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individuals included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pflugi, S., Vasireddy, R., Lerch, T. et al. Augmented marker tracking for peri-acetabular osteotomy surgery. Int J CARS 13, 291–304 (2018). https://doi.org/10.1007/s11548-017-1690-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-017-1690-6

Keywords

Navigation