Skip to main content

Advertisement

Log in

A clinically applicable laser-based image-guided system for laparoscopic liver procedures

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Laser range scanners (LRS) allow performing a surface scan without physical contact with the organ, yielding higher registration accuracy for image-guided surgery (IGS) systems. However, the use of LRS-based registration in laparoscopic liver surgery is still limited because current solutions are composed of expensive and bulky equipment which can hardly be integrated in a surgical scenario.

Methods

In this work, we present a novel LRS-based IGS system for laparoscopic liver procedures. A triangulation process is formulated to compute the 3D coordinates of laser points by using the existing IGS system tracking devices. This allows the use of a compact and cost-effective LRS and therefore facilitates the integration into the laparoscopic setup. The 3D laser points are then reconstructed into a surface to register to the preoperative liver model using a multi-level registration process.

Results

Experimental results show that the proposed system provides submillimeter scanning precision and accuracy comparable to those reported in the literature. Further quantitative analysis shows that the proposed system is able to achieve a patient-to-image registration accuracy, described as target registration error, of \(3.2\pm 0.57\,\hbox {mm}\).

Conclusions

We believe that the presented approach will lead to a faster integration of LRS-based registration techniques in the surgical environment. Further studies will focus on optimizing scanning time and on the respiratory motion compensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sjølie E, Langø T, Ystgaard B, Tangen G, Nagelhus Hernes T, Mårvik R (2003) 3D ultrasound-based navigation for radiofrequency thermal ablation in the treatment of liver malignancies. Surg Endosc 17(6):933–938

    Article  PubMed  Google Scholar 

  2. Hill DL, Batchelor P (2001) Registration methodology: concepts and algorithms, Biomedical engineering. In: Hajnal JV, Hill D, Hawkes D (eds) Medical Image Registration. CRC Press, London, pp 39–70

  3. Bao P, Warmath J, Galloway R Jr, Herline A (2005) Ultrasound-to-computer-tomography registration for image-guided laparoscopic liver surgery. Surg Endosc Other Interv Tech 19(3):424–429

    Article  CAS  Google Scholar 

  4. Herline AJ, Herring JL, Stefansic JD, Chapman WC, Galloway RL, Dawant BM (2000) Surface registration for use in interactive, image-guided liver surgery. Comput Aided Surg 5(1):11–17

    CAS  PubMed  Google Scholar 

  5. Lange T, Eulenstein S, Hünerbein M, Schlag P-M (2003) Vessel-based non-rigid registration of MR/CT and 3D ultrasound for navigation in liver surgery. Comput Aided Surg 8(5):228–240

    Article  PubMed  Google Scholar 

  6. Lathrop RA, Hackworth DM, Webster RJ (2010) Minimally invasive holographic surface scanning for soft-tissue image registration. Biomed Eng IEEE Trans 57(6):1497–1506

    Article  Google Scholar 

  7. Audette MA, Siddiqi K, Ferrie FP, Peters TM (2003) An integrated range-sensing, segmentation and registration framework for the characterization of intra-surgical brain deformations in image-guided surgery. Comput Vis Image Underst 89(2):226–251

    Article  Google Scholar 

  8. Schlaier J, Warnat J, Brawanski A (2002) Registration accuracy and practicability of laser-directed surface matching. Comput Aided Surg 7(5):284–290

    Article  CAS  PubMed  Google Scholar 

  9. Mcdonald CP, Brownhill JR, King GJ, Johnson JA, Peters TM (2007) A comparison of registration techniques for computer-and image-assisted elbow surgery. Comput Aided Surg 12(4):208–214

    Article  PubMed  Google Scholar 

  10. Joskowicz L, Shamir R, Freiman M, Shoham M, Zehavi E, Umansky F, Shoshan Y (2006) Image-guided system with miniature robot for precise positioning and targeting in keyhole neurosurgery. Comput Aided Surg 11(4):181–193

    Article  CAS  PubMed  Google Scholar 

  11. Cash DM, Sinha TK, Chapman WC, Terawaki H, Dawant BM, Galloway RL, Miga MI (2003) Incorporation of a laser range scanner into image-guided liver surgery: surface acquisition, registration, and tracking. Med Phys 30(7):1671–1682

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dumpuri P, Clements LW, Dawant BM, Miga MI (2010) Model-updated image-guided liver surgery: preliminary results using surface characterization. Prog Biophys Mol Biol 103(2–3):197–207. doi:10.1016/j.pbiomolbio.2010.09.014

    Article  PubMed  Google Scholar 

  13. Hayashibe M, Suzuki N, Nakamura Y (2006) Laser-scan endoscope system for intraoperative geometry acquisition and surgical robot safety management. Med Image Anal 10(4):509–519

    Article  PubMed  Google Scholar 

  14. Hayashibe M, Suzuki N, Hattori A, Nakamura Y (2002) Intraoperative fast 3D shape recovery of abdominal organs in laparoscopy. In: Medical image computing and computer-assisted intervention—MICCAI 2002. Springer, pp 356–363

  15. Friets E, Bieszczad J, Kynor D, Norris J, Davis B, Allen L, Chambers R, Wolf J, Glisson C, Herrell SD, Galloway RL (2013) Endoscopic laser range scanner for minimally invasive, image guided kidney surgery. In: SPIE medical imaging. International society for optics and photonics, pp 867105–867108

  16. Hess-Flores M, Recker S, Joy K (2014) Uncertainty, baseline, and noise analysis for L1 error-based multi-view triangulation. In: Pattern recognition (ICPR), 2014 22nd international conference on. IEEE, pp 4074–4079

  17. Beraldin J-A (2004) Integration of laser scanning and close-range photogrammetry—the last decade and beyond. In: Proceedings of the 20th congress international society for photogrammetry and remote sensing. Istanbul, Turkey, pp 972–983

  18. Zhang Z (2000) A flexible new technique for camera calibration. Pattern Anal Mach Intell IEEE Trans 22(11):1330–1334

    Article  Google Scholar 

  19. Besl PJ,McKay ND (1992) Method for registration of 3-D shapes. In: Proceedings of the SPIE 1611, sensor fusion IV: control paradigms and data structures, 586 (April 30, 1992). doi:10.1117/12.57955

  20. Arun KS, Huang TS, Blostein SD (1987) Least-squares fitting of two 3-D point sets. Pattern Anal Mach Intell IEEE Trans 5:698–700

    Article  Google Scholar 

  21. Mahnken AH, Ricke J (2009) CT-and MR-guided Interventions in Radiology, vol 22. Springer, New York

    Book  Google Scholar 

  22. Rohlfing T, Maurer CR Jr, O’Dell WG, Zhong J (2004) Modeling liver motion and deformation during the respiratory cycle using intensity-based nonrigid registration of gated MR images. Med Phys 31(3):427–432

    Article  PubMed  Google Scholar 

  23. Biro P, Spahn D, Pfammatter T (2009) High-frequency jet ventilation for minimizing breathing-related liver motion during percutaneous radiofrequency ablation of multiple hepatic tumours. Br J Anaesth 102(5):650–653. doi:10.1093/bja/aep051

    Article  CAS  PubMed  Google Scholar 

  24. Warner M, Warner M, Buck C, Segura J (1988) Clinical efficacy of high frequency jet ventilation during extracorporeal shock wave lithotripsy of renal and ureteral calculi: a comparison with conventional mechanical ventilation. J Urol 139(3):486–487

    CAS  PubMed  Google Scholar 

  25. Herline AJ, Stefansic JD, Debelak JP, Hartmann SL, Pinson CW, Galloway RL, Chapman WC (1999) Image-guided surgery: preliminary feasibility studies of frameless stereotactic liver surgery. Arch Surg 134(6):644–650. doi:10.1001/archsurg.134.6.644

    Article  CAS  PubMed  Google Scholar 

  26. Zijlmans M, Langø T, Hofstad EF, Van Swol CF, Rethy A (2012) Navigated laparoscopy-liver shift and deformation due to pneumoperitoneum in an animal model. Minim Invasive Ther Allied Technol 21(3):241–248

    Article  PubMed  Google Scholar 

  27. Heizmann O, Zidowitz S, Bourquain H, Potthast S, Peitgen H-O, Oertli D, Kettelhack C (2010) Assessment of intraoperative liver deformation during hepatic resection: prospective clinical study. World J Surg 34(8):1887–1893

    Article  PubMed  Google Scholar 

  28. Blackall JM, King AP, Penney GP, Adam A, Hawkes DJ (2001) A statistical model of respiratory motion and deformation of the liver. In: Medical image computing and computer-assisted intervention—MICCAI 2001. Springer, pp 1338–1340

  29. Schnabel JA, Rueckert D, Quist M, Blackall JM, Castellano-Smith AD, Hartkens T, Penney GP, Hall WA, Liu H, Truwit CL, Gerritsen FA, Hill DLG, Hawkes DJ (2001) A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations. In: Medical image computing and computer-assisted intervention—MICCAI 2001. Springer, pp 573–581

  30. Masutani Y, Kimura F (2001) Modally controlled free form deformation for non-rigid registration in image-guided liver surgery. In: Medical image computing and computer-assisted intervention—MICCAI 2001. Springer, pp 1275–1278

  31. Li H, Sumner RW, Pauly M (2008) Global correspondence optimization for non-rigid registration of depth scans. Comput Graph Forum 27:1421–1430. doi:10.1111/j.1467-8659.2008.01282.x

  32. Sinha TK, Dawant BM, Duay V, Cash DM, Weil RJ, Thompson RC, Weaver KD, Miga MI (2005) A method to track cortical surface deformations using a laser range scanner. Med Imaging IEEE Trans 24(6):767–781

    Article  Google Scholar 

  33. Simpson AL, Burgner J, Glisson CL, Herrell SD, Ma B, Pheiffer TS, Webster RJ, Miga M (2013) Comparison study of intraoperative surface acquisition methods for surgical navigation. Biomed Eng IEEE Trans 60(4):1090–1099

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Denise Baumann, Tom Williamson, Dr. Kate Gavaghan for advice and CAScination AG for providing the IGS system used in the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Fusaglia.

Ethics declarations

Conflict of interest

Matteo Fusaglia, Hanspeter Hess, Marius Schwalbe, Matthias Peterhans, Pascale Tinguely, Stefan Weber and Huanxiang Lu declare that they have no conflict of interest.

Human and animal rights statement

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fusaglia, M., Hess, H., Schwalbe, M. et al. A clinically applicable laser-based image-guided system for laparoscopic liver procedures. Int J CARS 11, 1499–1513 (2016). https://doi.org/10.1007/s11548-015-1309-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-015-1309-8

Keywords

Navigation