Skip to main content

Advertisement

Log in

A novel four-wire-driven robotic catheter for radio-frequency ablation treatment

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

   Robotic catheters have been proposed to increase the efficacy and safety of the radio-frequency ablation treatment. The robotized motion of current robotic catheters mimics the motion of manual ones—namely, deflection in one direction and rotation around the catheter. With the expectation that the higher dexterity may achieve further efficacy and safety of the robotically driven treatment, we prototyped a four-wire-driven robotic catheter with the ability to deflect in two- degree-of-freedom motions in addition to rotation.

Methods

   A novel quad-directional structure with two wires was designed and developed to attain yaw and pitch motion in the robotic catheter. We performed a mechanical evaluation of the bendability and maneuverability of the robotic catheter and compared it with current manual catheters.

Results

   We found that the four-wire-driven robotic catheter can achieve a pitching angle of 184.7\(^{\circ }\) at a pulling distance of wire for 11 mm, while the yawing angle was 170.4\(^{\circ }\) at 11 mm. The robotic catheter could attain the simultaneous two- degree-of-freedom motions in a simulated cardiac chamber.

Conclusion

   The results indicate that the four-wire-driven robotic catheter may offer physicians the opportunity to intuitively control a catheter and smoothly approach the focus position that they aim to ablate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Haissaguerre M, Jais P, Hocini M, O’Neill MD, Sanders P (2006) Catheter ablation of long-lasting persistent atrial fibrillation: clinical outcome and mechanisms of subsequent arrhythmias—reply. J Cardiovasc Electrophysiol 17(5):574–575. doi:10.1111/j.1540-8167.2006.00466.x

    Article  Google Scholar 

  2. Stabile G, Bertaglia E, Senatore G, De Simone A, Zoppo F, Donnici G, Turco P, Pascotto P, Fazzari M, Vitale DF (2006) Catheter ablation treatment in patients with drug-refractory atrial fibrillation: a prospective, multi-centre, randomized, controlled study (Catheter Ablation for the Cure of Atrial Fibrillation Study). Eur Heart J 27(2):216–221. doi:10.1093/eurheartj/ehi583

    Article  PubMed  Google Scholar 

  3. Lemola K, Desjardins B, Sneider M, Case I, Chugh A, Good E, Han J, Tamirisa K, Tsemo A, Reich S, Tschopp D, Igic P, Elmouchi D, Bogun F, Pelosi F, Kazerooni E, Morady F, Oral H (2005) Effect of left atrial circumferential ablation for atrial fibrilation on left atrial transport function. Heart Rhythm 2(9):923–928. doi:10.1016/j.hrthm.2005.06.026

    Article  PubMed  Google Scholar 

  4. Hsu LF, Jais P, Sanders P, Garrigue S, Hocini M, Sacher F, Takahashi Y, Rotter M, Pasquie J, Scavee C, Bordachar P, Clementy J, Haissaguerre M (2004) Catheter ablation for atrial fibrillation in congestive heart failure. N Engl J Med 351(23):2373–2383. doi:10.1056/NEJMoa041018

    Article  PubMed  CAS  Google Scholar 

  5. Cosedis Nielsen J, Johannessen A, Raatikainen P, Hindricks G, Walfridsson H, Kongstad O, Pehrson S, Englund A, Hartikainen J, Mortensen LS, Hansen PS (2012) Radiofrequency ablation as initial therapy in paroxysmal atrial fibrillation. N Engl J Med 367(17):1587–1595. doi:10.1056/NEJMoa1113566

    Article  PubMed  Google Scholar 

  6. Criado FJ (2000) Endovascular intervention: basic concepts and techniques. J Endovasc Ther 7(3):255

    Article  Google Scholar 

  7. Chun KRJ, Schmidt B, Koektuerk B, Tilz R, Fuernkranz A, Konstantinidou M, Wissner E, Metzner A, Ouyang F, Kuck K-H (2008) Catheter ablation—new developments in robotics. Herz 33(8):586–589. doi:10.1007/s00059-008-3180-7

    Article  PubMed  Google Scholar 

  8. Ernst S (2008) Robotic approach to catheter ablation. Curr Opin Cardiol 23(1):28–31

    Article  PubMed  Google Scholar 

  9. Ganji Y, Janabi-Sharifi F, Cheema AN (2009) Robot-assisted catheter manipulation for intracardiac navigation. Int J Comput Assist Radiol Surg 4(4):307–315. doi:10.1007/s11548-009-0296-z

    Article  PubMed  Google Scholar 

  10. Ganji Y, Janabi-Sharifi F (2009) Catheter kinematics for intracardiac navigation. IEEE Trans Biomed Eng 56(3):621–632. doi:10.1109/tbme.2009.2013134

    Article  PubMed  Google Scholar 

  11. Xiao N, Guo J, Guo S, Tamiya T (2012) A robotic catheter system with real-time force feedback and monitor. Australas Phys Eng Sci Med 35(3):283–289. doi:10.1007/s13246-012-0146-0

    Article  PubMed  Google Scholar 

  12. Camarillo DB, Carlson CR, Salisbury JK (2009) Configuration tracking for continuum manipulators with coupled tendon drive. IEEE Trans Robotics 25(4):798–808. doi:10.1109/tro.2009.2022426

    Article  Google Scholar 

  13. Camarillo DB, Milne CF, Carlson CR, Zinn MR, Salisbury JK (2008) Mechanics modeling of tendon-driven continuum manipulators. IEEE Trans Robotics 24(6):1262–1273. doi:10.1109/tro.2008.2002311

    Article  Google Scholar 

  14. Jayender J, Patel RV, Michaud GF, Hata N (2011) Optimal transseptal puncture location for robot-assisted left atrial catheter ablation. Int J Med Robot Comput Assist Surg 7(2):193–201. doi:10.1002/rcs.388

    Article  CAS  Google Scholar 

  15. Tavallaei MA, Thakur Y, Haider S, Drangova M (2013) A magnetic-resonance-imaging-compatible remote catheter navigation system. IEEE Trans Biomed Eng 60(4):899–905. doi:10.1109/TBME.2012.2229709

    Article  PubMed  Google Scholar 

  16. Riga CV, Bicknell CD, Hamady MS, Cheshire NJ (2011) Evaluation of robotic endovascular catheters for arch vessel cannulation. J Vasc Surg 54(3):799–809. doi:10.1016/j.jvs.2011.03.218

    Article  PubMed  Google Scholar 

  17. Saliba W, Reddy VY, Wazni O, Cummings JE, Burkhardt JD, Haissaguerre M, Kautzner J, Peichl P, Neuzil P, Schibgilla V, Noelker G, Brachmann J, Di Biase L, Barrett C, Jais P, Natale A (2008) Atrial fibrillation ablation using a robotic catheter remote control system–initial human experience and long-term follow-up results. J Am Coll Cardiol 51(25):2407–2411. doi:10.1016/j.jacc.2008.03.027

    Article  PubMed  Google Scholar 

  18. Di Biase L, Wang Y, Horton R, Gallinghouse GJ, Mohanty P, Sanchez J, Patel D, Dare M, Canby R, Price LD, Zagrodzky JD, Bailey S, Burkhardt JD, Natale A (2009) Ablation of atrial fibrillation utilizing robotic catheter navigation in comparison to manual navigation and ablation: single-center experience. J Cardiovasc Electrophysiol 20(12):1328–1335. doi:10.1111/j.1540-8167.2009.01570.x

    Article  PubMed  Google Scholar 

  19. Bai R, Di Biase L, Valderrabano M, Lorgat F, Mlcochova H, Tilz R, Meyerfeldt U, Hranitzky PM, Wazni O, Kanagaratnam P, Doshi RN, Gibson D, Pisapia A, Mohanty P, Saliba W, Ouyang F, Kautzner J, Gallinghouse GJ, Natale A (2012) Worldwide experience with the robotic navigation system in catheter ablation of atrial fibrillation: methodology, efficacy and safety. J Cardiovasc Electrophysiol 23(8):820–826. doi:10.1111/j.1540-8167.2012.02316.x

    Google Scholar 

  20. Khan EM, Frumkin W, Ng GA, Neelagaru S, Abi-Samra FM, Lee J, Giudici M, Gohn D, Winkle RA, Sussman J, Knight BP, Berman A, Calkins H (2013) First experience with a novel robotic remote catheter system: Amigo mapping trial. J Interv Cardiac Electrophysiol Int J Arrhythm Pacing 37(2):121–129. doi:10.1007/s10840-013-9791-9

    Google Scholar 

  21. Kahraman H, Ozaydin M, Varol E, Aslan SM, Dogan A, Altinbas A, Demir M, Gedikli O, Acar G, Ergene O (2006) The diameters of the aorta and its major branches in patients with isolated coronary artery ectasia. Tex Heart Inst J 33(4):463–468

    PubMed  PubMed Central  Google Scholar 

  22. Mao SS, Ahmadi N, Shah B, Beckmann D, Chen A, Ngo L, Flores FR, Gao YL, Budoff MJ (2008) Normal thoracic aorta diameter on cardiac computed tomography in healthy asymptomatic adults: impact of age and gender. Acad Radiol 15(7):827–834. doi:10.1016/j.acra.2008.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  23. Litmanovich D, Bankier AA, Cantin L, Raptopoulos V, Boiselle PM (2009) CT and MRI in diseases of the aorta. AJR Am J Roentgenol 193(4):928–940. doi:10.2214/AJR.08.2166

    Article  PubMed  Google Scholar 

  24. Penning RS, Jung J, Ferrier NJ, Zinn MR (2011) An evaluation of closed-loop control options for continuum manipulators. doi:10.1109/icra.2012.6224735

  25. Klemm HU, Steven D, Johnsen C, Ventura R, Rostock T, Lutomsky B, Risius T, Meinertz T, Willems S (2007) Catheter motion during atrial ablation due to the beating heart and respiration: impact on accuracy and spatial referencing in three-dimensional mapping. Heart Rhythm 4(5):587–592. doi:10.1016/j.hrthm.2007.01.016

    Article  PubMed  Google Scholar 

  26. Mullins DCE (2008) Cardiac catheterization in congenital heart disease pediatric and adult. Wiley, Chichester

    Google Scholar 

  27. Fu Y, Liu H, Huang W, Wang S, Liang Z (2009) Steerable catheters in minimally invasive vascular surgery. Int J Med Robot 5(4):381–391. doi:10.1002/rcs.282

    Article  PubMed  Google Scholar 

  28. Kandzari DE, Bhatt DL, Sobotka PA, O’Neill WW, Esler M, Flack JM, Katzen BT, Leon MB, Massaro JM, Negoita M, Oparil S, Rocha-Singh K, Straley C, Townsend RR, Bakris G (2012) Catheter-based renal denervation for resistant hypertension: rationale and design of the SYMPLICITY HTN-3 Trial. Clin Cardiol 35(9):528–535. doi:10.1002/clc.22008

    Article  PubMed  Google Scholar 

  29. Bock M, Wacker FK (2008) MR-guided intravascular interventions: techniques and applications. J Magn Reson Imaging 27(2):326–338. doi:10.1002/jmri.21271

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by The National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under award number P41EB015898. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. NH is a member of the Board of Directors of AZE Technology and has an equity interest in the company. AZE Technology develops and sells imaging technology and software. NH’s interests were reviewed and are managed by the Brigham and Women’s Hospital and Partners HealthCare in accordance with their conflict of interest policies. KY was in part supported by Global COE entitled “The Multidisciplinary Education and Research Center for the Establishment of Regenerative Medicine” at Tokyo Women’s Medical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kitaro Yoshimitsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshimitsu, K., Kato, T., Song, SE. et al. A novel four-wire-driven robotic catheter for radio-frequency ablation treatment. Int J CARS 9, 867–874 (2014). https://doi.org/10.1007/s11548-014-0982-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-014-0982-3

Keywords

Navigation