Skip to main content

Advertisement

Log in

Automatic recognition of major fissures in human lungs

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

The major hurdle for three-dimensional display of lung lobes is the automatic recognition of lobar fissures, boundaries of lung lobes. Lobar fissures are difficult to recognize due to their variable shape and appearance, along with the low contrast and high noise inherent in computed tomographic (CT) images. An algorithm for recognizing the major fissures in human lungs was developed and tested.

Methods

The algorithm employs texture analysis and fissure appearance to mimic the way that surgeons/radiologists read CT images in clinical settings. The algorithm uses 3 stages to automatically find the major fissures in human lungs: (a) texture analysis, (b) fissure region analysis, and (c) fissure identification.

Results

The algorithm’s feasibility was evaluated using isotropic CT images from 16 anonymous patients with varying pathologies. Compared with manual segmentation, the algorithm yielded mean distances of 1.92 ± 2.07 and 2.07 ± 2.37 mm, for recognizing the left and right major fissures, respectively.

Conclusions

An automatic recognition algorithm for major fissures in human lungs is feasible, providing a foundation for the future development of a complete segmentation algorithm for lung lobes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Lung Association (2008) Lung disease data: 2008. American Lung Association, New York

  2. Hemminger BM, Molina PL, Egan TM, Detterbeck FC, Muller KE, Coffrey CS, Lee JK (2005) Assessment of real-time 3D visualization for cardiothoracic diagnostic evaluation and surgery planning. J Digit Imaging 18: 145–153

    Article  PubMed  Google Scholar 

  3. Kuhnigk J-M, Dicken V, Zidowitz S, Bornemann L, Kuemmerlen B, Krass S, Peitgen H-O, Yuval S, Fend H-H, Rau WS, Achenbach T (2005) New tools for computer assistance in thoracic CT part 1. Functional analysis of lungs, lung lobes, and bronchopulmonary segments. Radiographics 25: 525–536

    Article  PubMed  Google Scholar 

  4. Hayashi K, Aziz A, Ashizawa K, Hayashi H, Nagaoki K, Otsuji H (2001) Radiographic and CT appearances of the major fissures. Radiographics 21: 861–874

    PubMed  CAS  Google Scholar 

  5. Webb WR, Muller NL, Naidich DP (2001) High-resolution CT of the lung, 3rd edn. Lippincott, Williams and Wilkins, Philadelphia

    Google Scholar 

  6. Raasch BN, Carsky EW, Lane EJ, O’Callaghan JP, Heitzman ER (1982) Radiographic anatomy of the interlobar fissures: a study of 100 specimens. AJR 138: 554–647

    Google Scholar 

  7. Kass M, Witkin A, Terzopoulos D (1987) Snakes: active contour models. Int J Comp Vis v1: 321–331

    Google Scholar 

  8. Malladi R, Sethian JA, Vemuri BC (1995) Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Mach Intell 17: 158–175

    Article  Google Scholar 

  9. Kuhnigk JM, Hahn HK, Hindennach M, Dicken V, Krass S, Peitgen H-O (2003) Lung lobe segmentation by anatomy-guided 3-D watershed transform. Proc SPIE (Med Imag) 5032: 1482–1490

    Article  Google Scholar 

  10. Ukil S, Reinhardt JM (2009) Anatomy-guided lung lobe segmentation in X-ray CT images. IEEE Trans Med Imaging 28: 202–214

    Article  PubMed  Google Scholar 

  11. Zhou X, Hayashi T, Hara T, Fujita H, Yokoyama R, Kiryu T, Hoshi H (2006) Automatic segmentation and recognition of anatomical lung structures from high-resolution chest CT images. Comput Med Imag Graph 30: 299–313

    Article  Google Scholar 

  12. Saita S, Kubo M, Kawata Y, Niki N, Ohmatsu H, Moriyama N (2006) An algorithm for the extraction of pulmonary fissures from low-dose multislice CT images. Syst Comput Jpn 37: 63–76

    Article  Google Scholar 

  13. Van Rikxoort EM, Ginneken B, Klik M, Prokop M (2008) Supervised enhancement filters: application to fissure detection in chest CT scans. IEEE Trans Med Imaging 27: 1–10

    Article  PubMed  CAS  Google Scholar 

  14. Van Rikxoort EM, Prokop M, Hoop B, Viergever MA, Pluim JPW, Ginneken B (2010) Automatic segmentation of pulmonary lobes robust against incomplete fissures. IEEE Trans Med Imaging 29: 1286–1296

    Article  PubMed  Google Scholar 

  15. Kubo M, Niki N, Eguchi K, Kaneko M, Kusumoto M (2000) Extraction of pulmonary fissures from thin-section CT images using calculation of surface-curvatures and morphology filters. In: Proceedings of the IEEE international conference on image processing. pp 637–640

  16. Zhang L, Hoffman EA, Reinhardt JM (2006) Atlas-driven lung lobe segmentation in volumetric X-ray CT images. IEEE Trans Med Imaging 25: 1–16

    Article  PubMed  Google Scholar 

  17. Wang J, Betke M, Ko JP (2006) Pulmonary fissure segmentation on CT. Med Image Anal 10: 530–547

    Article  PubMed  Google Scholar 

  18. Pu J, Leader JK, Zheng B, Knollmann F, Fuhrman C, Sciurba FC, Gur D (2009) A computational geometry approach to automated pulmonary fissure segmentation in CT examinations. IEEE Trans Med Imaging 28: 710–719

    Article  PubMed  Google Scholar 

  19. Wei Q, Hu Y, Gelfand G, Macgregor JH (2009) Segmentation of lung lobes in high-resolution isotropic CT images. IEEE Trans Biomed Eng 56: 1383–1393

    Article  PubMed  Google Scholar 

  20. Aykac D, Hoffman EA, McLennan G, Reinhardt JM (2003) Segmentation and analysis of the human airway tree from three-dimensional X-ray CT images. IEEE Trans Med Imaging 22: 940–950

    Article  PubMed  Google Scholar 

  21. Tschirren J, Hoffman EA, McLennan G, Sonka M (2005) Intrathoracic airway trees: segmentation and airway morphology analysis from low-dose CT scans. IEEE Trans Med Imaging 24: 1529–1539

    Article  PubMed  Google Scholar 

  22. Wei Q, Hu Y (2009) A study on using texture analysis methods for identifying lobar fissure regions in isotropic CT images. In: 31st annual international conference of the IEEE EMBS. pp 3537–3540

  23. Anderson JA (1995) An introduction to neural networks. MIT Press, Cambridge

    Google Scholar 

  24. Nguyen D, Widrow B (1990) Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. Proceedings of the international joint conference on neural networks, vol 3. 21–26

  25. Galloway M (1974) Texture analysis using gray-level run lengths. Comput Graph Image Proc 4: 172–199

    Article  Google Scholar 

  26. Sonka M, Hlavac V, Boyle R (2008) Image processing, analysis, and machine vision, 3rd edn. Thomson Learning, Toronto

    Google Scholar 

  27. Aziz A, Ashizawa K, Nagaoki K (2004) High resolution CT anatomy of the pulmonary fissures. J Thorac Imaging 19: 186–191

    Article  PubMed  Google Scholar 

  28. Tabachick BG, Fidell LS (2006) Experimental designs using ANOVA. Buxbury Press, Pacific Grove

    Google Scholar 

  29. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancert I: 307–310

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaoping Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, Q., Hu, Y., MacGregor, J.H. et al. Automatic recognition of major fissures in human lungs. Int J CARS 7, 111–123 (2012). https://doi.org/10.1007/s11548-011-0632-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-011-0632-y

Keywords

Navigation