Skip to main content
Log in

Radiomic and quantitative-semantic models of low-dose computed tomography for predicting the poorly differentiated invasive non-mucinous pulmonary adenocarcinoma

  • Chest Radiology
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

Poorly differentiated invasive non-mucinous pulmonary adenocarcinoma (IPA), based on the novel grading system, was related to poor prognosis, with a high risk of lymph node metastasis and local recurrence. This study aimed to build the radiomic and quantitative-semantic models of low-dose computed tomography (LDCT) to preoperatively predict the poorly differentiated IPA in nodules with solid component, and compare their diagnostic performance with radiologists.

Materials and methods

A total of 396 nodules from 388 eligible patients, who underwent LDCT scan within 2 weeks before surgery and were pathologically diagnosed with IPA, were retrospectively enrolled between July 2018 and December 2021. Nodules were divided into two independent cohorts according to scanners: primary cohort (195 well/moderate differentiated and 64 poorly differentiated) and validation cohort (104 well/moderate differentiated and 33 poorly differentiated). The radiomic and quantitative-semantic models were built using multivariable logistic regression. The diagnostic performance of the models and radiologists was assessed by area under curve (AUC) of receiver operating characteristic (ROC) curve, accuracy, sensitivity, and specificity.

Results

No significant differences of AUCs were found between the radiomic and quantitative-semantic model in primary and validation cohorts (0.921 vs. 0.923, P = 0.846 and 0.938 vs. 0.911, P = 0.161). Both the models outperformed three radiologists in the validation cohort (all P < 0.05).

Conclusions

The radiomic and quantitative-semantic models of LDCT, which could identify the poorly differentiated IPA with excellent diagnostic performance, might provide guidance for therapeutic decision making, such as choosing appropriate surgical method or adjuvant chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AI:

Artificial intelligence

AIC:

Akaike’s information criterion

AUC:

Area under the curve

CT:

Computed tomography

CTR:

Consolidation/tumor ratio

DCA:

Decision curve analysis

IASLC:

International Association for the Study of Lung Cancer Pathology Committee

IBSI:

Imaging Biomarker Standardization Initiative

ICC:

Intraclass correlation coefficient

IPA:

Invasive non-mucinous pulmonary adenocarcinoma

LASSO:

Least absolute shrinkage and selection operator

LDCT:

Low-dose computed tomography

mRMR:

Minimum redundancy-maximum relevance

RFS:

Recurrence-free survival

ROC:

Receiver operating characteristic

TRIPOD:

Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis

WHO:

World Health Organization

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Moreira AL, Ocampo PSS, Xia Y, Zhong H, Russell PA, Minami Y et al (2020) A grading system for invasive pulmonary adenocarcinoma: a proposal from the international association for the study of lung cancer pathology committee. J Thorac Oncol 15(10):1599–1610. https://doi.org/10.1016/j.jtho.2020.06.001

    Article  PubMed  PubMed Central  Google Scholar 

  3. Deng C, Zheng Q, Zhang Y, Jin Y, Shen X, Nie X et al (2021) Validation of the novel international association for the study of lung cancer grading system for invasive pulmonary adenocarcinoma and association with common driver mutations. J Thorac Oncol 16(10):1684–1693. https://doi.org/10.1016/j.jtho.2021.07.006

    Article  CAS  PubMed  Google Scholar 

  4. Rokutan-Kurata M, Yoshizawa A, Ueno K, Nakajima N, Terada K, Hamaji M et al (2021) Validation study of the international association for the study of lung cancer histologic grading system of invasive lung adenocarcinoma. J Thorac Oncol 16(10):1753–1758. https://doi.org/10.1016/j.jtho.2021.04.008

    Article  PubMed  Google Scholar 

  5. Hou L, Wang T, Chen D, She Y, Deng J, Yang M et al (2022) Prognostic and predictive value of the newly proposed grading system of invasive pulmonary adenocarcinoma in Chinese patients: a retrospective multicohort study. Mod Pathol 35(6):749–756. https://doi.org/10.1038/s41379-021-00994-5

    Article  PubMed  Google Scholar 

  6. Yanagawa N, Shiono S, Abiko M, Katahira M, Osakabe M, Ogata SY (2016) The clinical impact of solid and micropapillary patterns in resected lung adenocarcinoma. J Thorac Oncol 11(11):1976–1983. https://doi.org/10.1016/j.jtho.2016.06.014

    Article  PubMed  Google Scholar 

  7. Nitadori J, Bograd AJ, Kadota K, Sima CS, Rizk NP, Morales EA et al (2013) Impact of micropapillary histologic subtype in selecting limited resection vs lobectomy for lung adenocarcinoma of 2cm or smaller. J Natl Cancer Inst 105(16):1212–1220. https://doi.org/10.1093/jnci/djt166

    Article  PubMed  PubMed Central  Google Scholar 

  8. Baig MZ, Razi SS, Weber JF, Connery CP, Bhora FY (2020) Lobectomy is superior to segmentectomy for peripheral high grade non-small cell lung cancer ≤2 cm. J Thorac Dis 12(10):5925–5933. https://doi.org/10.21037/jtd-20-1530

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tsao MS, Marguet S, Le Teuff G, Lantuejoul S, Shepherd FA, Seymour L et al (2015) Subtype classification of lung adenocarcinoma predicts benefit from adjuvant chemotherapy in patients undergoing complete resection. J Clin Oncol 33(30):3439–3446. https://doi.org/10.1200/jco.2014.58.8335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weng CF, Huang CJ, Huang SH, Wu MH, Tseng AH, Sung YC et al (2020) New international association for the study of lung cancer (IASLC) pathology committee grading system for the prognostic outcome of advanced lung adenocarcinoma. Cancers (Basel). https://doi.org/10.3390/cancers12113426

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lederlin M, Puderbach M, Muley T, Schnabel PA, Stenzinger A, Kauczor HU et al (2013) Correlation of radio- and histomorphological pattern of pulmonary adenocarcinoma. Eur Respir J 41(4):943–951. https://doi.org/10.1183/09031936.00056612

    Article  PubMed  Google Scholar 

  12. Miao Y, Zhang J, Zou J, Zhu Q, Lv T, Song Y (2017) Correlation in histological subtypes with high resolution computed tomography signatures of early stage lung adenocarcinoma. Transl Lung Cancer Res 6(1):14–22. https://doi.org/10.21037/tlcr.2017.02.06

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen LW, Yang SM, Wang HJ, Chen YC, Lin MW, Hsieh MS et al (2021) Prediction of micropapillary and solid pattern in lung adenocarcinoma using radiomic values extracted from near-pure histopathological subtypes. Eur Radiol 31(7):5127–5138. https://doi.org/10.1007/s00330-020-07570-6

    Article  PubMed  Google Scholar 

  14. Yang SM, Chen LW, Wang HJ, Chen LR, Lor KL, Chen YC et al (2018) Extraction of radiomic values from lung adenocarcinoma with near-pure subtypes in the International Association for the Study of Lung Cancer/the American Thoracic Society/the European Respiratory Society (IASLC/ATS/ERS) classification. Lung Cancer 119:56–63. https://doi.org/10.1016/j.lungcan.2018.03.004

    Article  PubMed  Google Scholar 

  15. He B, Song Y, Wang L, Wang T, She Y, Hou L et al (2021) A machine learning-based prediction of the micropapillary/solid growth pattern in invasive lung adenocarcinoma with radiomics. Transl Lung Cancer Res 10(2):955–964. https://doi.org/10.21037/tlcr-21-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li M, Ruan Y, Feng Z, Sun F, Wang M, Zhang L (2021) Preoperative CT-based radiomics combined with nodule type to predict the micropapillary pattern in lung adenocarcinoma of size 2 cm or less: a multicenter study. Front Oncol 11:788424. https://doi.org/10.3389/fonc.2021.788424

    Article  PubMed  PubMed Central  Google Scholar 

  17. Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB et al (2015) The 2015 world health organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol 10(9):1243–1260. https://doi.org/10.1097/jto.0000000000000630

    Article  PubMed  Google Scholar 

  18. Kadota K, Kushida Y, Kagawa S, Ishikawa R, Ibuki E, Inoue K et al. (2019) Cribriform subtype is an independent predictor of recurrence and survival after adjustment for the eighth edition of TNM staging system in patients with resected lung adenocarcinoma. J Thorac Oncol 14(2):245–54. https://doi.org/10.1016/j.jtho.2018.09.028

  19. Warth A, Muley T, Kossakowski C, Stenzinger A, Schirmacher P, Dienemann H et al (2015) Prognostic impact and clinicopathological correlations of the cribriform pattern in pulmonary adenocarcinoma. J Thorac Oncol 10(4):638–644. https://doi.org/10.1097/jto.0000000000000490

    Article  CAS  PubMed  Google Scholar 

  20. Gao Y, Hua M, Lv J, Ma Y, Liu Y, Ren M et al (2022) Reproducibility of radiomic features of pulmonary nodules between low-dose CT and conventional-dose CT. Quant Imag Med Surg 12(4):2368–2377. https://doi.org/10.21037/qims-21-609

    Article  Google Scholar 

  21. Liu J, Xu H, Qing H, Li Y, Yang X, He C et al (2021) Comparison of radiomic models based on low-dose and standard-dose CT for prediction of adenocarcinomas and benign lesions in solid pulmonary nodules. Front Oncol 10:634298. https://doi.org/10.3389/fonc.2020.634298

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kim YJ, Lee HJ, Kim KG, Lee SH (2019) The effect of CT Scan parameters on the measurement of CT radiomic features: a lung nodule phantom study. Comput Math Methods Med 2019:8790694. https://doi.org/10.1155/2019/8790694

    Article  PubMed  PubMed Central  Google Scholar 

  23. de Koning HJ, van der Aalst CM, de Jong PA, Scholten ET, Nackaerts K, Heuvelmans MA et al (2020) Reduced lung-cancer mortality with volume CT screening in a randomized trial. N Engl J Med 382(6):503–513. https://doi.org/10.1056/NEJMoa1911793

    Article  PubMed  Google Scholar 

  24. Li Y, Liu J, Yang X, Xu H, Qing H, Ren J et al (2022) Prediction of invasive adenocarcinomas manifesting as pure ground-glass nodules based on radiomic signature of low-dose CT in lung cancer screening. Br J Radiol 95(1133):20211048. https://doi.org/10.1259/bjr.20211048

    Article  PubMed  Google Scholar 

  25. Lee HY, Choi YL, Lee KS, Han J, Zo JI, Shim YM et al (2014) Pure ground-glass opacity neoplastic lung nodules: histopathology, imaging, and management. AJR Am J Roentgenol 202(3):W224–W233. https://doi.org/10.2214/ajr.13.11819

    Article  PubMed  Google Scholar 

  26. Wang Z, Zhu W, Lu Z, Li W, Shi J (2021) Invasive adenocarcinoma manifesting as pure ground glass nodule with different size: radiological characteristics differ while prognosis remains the same. Transl Cancer Res 10(6):2755–2766. https://doi.org/10.21037/tcr-21-78

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hattori A, Suzuki K, Takamochi K, Wakabayashi M, Aokage K, Saji H et al (2021) Prognostic impact of a ground-glass opacity component in clinical stage IA non-small cell lung cancer. J Thorac Cardiovasc Surg 161(4):1469–1480. https://doi.org/10.1016/j.jtcvs.2020.01.107

    Article  PubMed  Google Scholar 

  28. Lin YH, Chen CK, Hsieh CC, Hsu WH, Wu YC, Hung JJ et al (2020) Lymphadenectomy is unnecessary for pure ground-glass opacity pulmonary nodules. J Clin Med. https://doi.org/10.3390/jcm9030672

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang Q, Zhou X, Wang C, Liu Z, Huang J, Zhou Y et al (2019) WGAN-based synthetic minority over-sampling technique: improving semantic fine-grained classification for lung nodules in CT images. IEEE Access 7:18450–18463. https://doi.org/10.1109/ACCESS.2019.2896409

    Article  Google Scholar 

  30. Mu G, Chen Y, Wu D, Zhan Y, Zhou XS, Gao Y (2019) relu cascade of feature pyramid networks for CT pulmonary nodule detection. In: Suk H-I, Liu M, Yan P, Lian C (eds) Machine learning in medical imaging. Springer International Publishing, Cham, pp 444–452

    Chapter  Google Scholar 

  31. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77(21):e104–e107. https://doi.org/10.1158/0008-5472.can-17-0339

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zwanenburg A, Vallieres M, Abdalah MA, Aerts H, Andrearczyk V, Apte A et al (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295(2):328–338. https://doi.org/10.1148/radiol.2020191145

    Article  PubMed  Google Scholar 

  33. Hanchuan P, Fuhui L, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238. https://doi.org/10.1109/TPAMI.2005.159

    Article  Google Scholar 

  34. Sauerbrei W, Boulesteix AL, Binder H (2011) Stability investigations of multivariable regression models derived from low- and high-dimensional data. J Biopharm Stat 21(6):1206–1231. https://doi.org/10.1080/10543406.2011.629890

    Article  PubMed  Google Scholar 

  35. MacMahon H, Naidich DP, Goo JM, Lee KS, Leung ANC, Mayo JR et al (2017) Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner society 2017. Radiology 284(1):228–243. https://doi.org/10.1148/radiol.2017161659

    Article  PubMed  Google Scholar 

  36. Saji H, Okada M, Tsuboi M, Nakajima R, Suzuki K, Aokage K et al (2022) Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer (JCOG0802/WJOG4607L): a multicentre, open-label, phase 3, randomised, controlled, non-inferiority trial. Lancet 399(10335):1607–1617. https://doi.org/10.1016/s0140-6736(21)02333-3

    Article  CAS  PubMed  Google Scholar 

  37. Hosmer DW, Hosmer T, Le Cessie S, Lemeshow S (1997) A comparison of goodness-of-fit tests for the logistic regression model. Stat Med 16(9):965–980. https://doi.org/10.1002/(sici)1097-0258(19970515)16:9%3c965::aid-sim509%3e3.0.co;2-o

    Article  CAS  PubMed  Google Scholar 

  38. Vickers AJ, Elkin EB (2006) Decision curve analysis: a novel method for evaluating prediction models. Med Decis Making 26(6):565–574. https://doi.org/10.1177/0272989x06295361

    Article  PubMed  PubMed Central  Google Scholar 

  39. Moons KG, Altman DG, Reitsma JB, Ioannidis JP, Macaskill P, Steyerberg EW et al (2015) Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med 162(1):W1-73. https://doi.org/10.7326/M14-0698

    Article  PubMed  Google Scholar 

  40. Nicholson AG, Tsao MS, Beasley MB, Borczuk AC, Brambilla E, Cooper WA et al (2022) The 2021 WHO classification of lung tumors: impact of advances since 2015. J Thorac Oncol 17(3):362–387. https://doi.org/10.1016/j.jtho.2021.11.003

    Article  PubMed  Google Scholar 

  41. Huang KY, Ko PZ, Yao CW, Hsu CN, Fang HY, Tu CY et al (2017) Inaccuracy of lung adenocarcinoma subtyping using preoperative biopsy specimens. J Thorac Cardiovasc Surg. https://doi.org/10.1016/j.jtcvs.2017.02.059

    Article  PubMed  PubMed Central  Google Scholar 

  42. Song SH, Park H, Lee G, Lee HY, Sohn I, Kim HS et al (2017) Imaging phenotyping using radiomics to predict micropapillary pattern within lung adenocarcinoma. J Thorac Oncol 12(4):624–632. https://doi.org/10.1016/j.jtho.2016.11.2230

    Article  PubMed  Google Scholar 

  43. Xu Y, Ji W, Hou L, Lin S, Shi Y, Zhou C et al (2021) Enhanced CT-based radiomics to predict micropapillary pattern within lung invasive adenocarcinoma. Front Oncol 11:704994. https://doi.org/10.3389/fonc.2021.704994

    Article  PubMed  PubMed Central  Google Scholar 

  44. He L, Huang Y, Ma Z, Liang C, Liang C, Liu Z (2016) Effects of contrast-enhancement, reconstruction slice thickness and convolution kernel on the diagnostic performance of radiomics signature in solitary pulmonary nodule. Sci Rep 6:34921. https://doi.org/10.1038/srep34921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fujikawa R, Muraoka Y, Kashima J, Yoshida Y, Ito K, Watanabe H et al (2022) Clinicopathologic and genotypic features of lung adenocarcinoma characterized by the international association for the study of lung cancer grading system. J Thorac Oncol 17(5):700–707. https://doi.org/10.1016/j.jtho.2022.02.005

    Article  CAS  PubMed  Google Scholar 

  46. Takahashi S, Tanaka N, Okimoto T, Tanaka T, Ueda K, Matsumoto T et al (2012) Long term follow-up for small pure ground-glass nodules: implications of determining an optimum follow-up period and high-resolution CT findings to predict the growth of nodules. Jpn J Radiol 30(3):206–217. https://doi.org/10.1007/s11604-011-0033-8

    Article  PubMed  Google Scholar 

  47. Nakazono T, Sakao Y, Yamaguchi K, Imai S, Kumazoe H, Kudo S (2005) Subtypes of peripheral adenocarcinoma of the lung: differentiation by thin-section CT. Eur Radiol 15(8):1563–1568. https://doi.org/10.1007/s00330-004-2595-7

    Article  CAS  PubMed  Google Scholar 

  48. Xia T, Cai M, Zhuang Y, Ji X, Huang D, Lin L et al (2020) Risk factors for the growth of residual nodule in surgical patients with adenocarcinoma presenting as multifocal ground-glass nodules. Eur J Radiol 133:109332. https://doi.org/10.1016/j.ejrad.2020.109332

    Article  PubMed  Google Scholar 

  49. Gao F, Li M, Ge X, Zheng X, Ren Q, Chen Y et al (2013) Multi-detector spiral CT study of the relationships between pulmonary ground-glass nodules and blood vessels. Eur Radiol 23(12):3271–3277. https://doi.org/10.1007/s00330-013-2954-3

    Article  PubMed  Google Scholar 

  50. Aerts HJ (2016) The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol 2(12):1636–1642. https://doi.org/10.1001/jamaoncol.2016.2631

    Article  PubMed  Google Scholar 

  51. Tomaszewski MR, Gillies RJ (2021) The biological meaning of radiomic features. Radiology 298(3):505–516. https://doi.org/10.1148/radiol.2021202553

    Article  PubMed  Google Scholar 

  52. Vicini S, Bortolotto C, Rengo M, Ballerini D, Bellini D, Carbone I et al (2022) A narrative review on current imaging applications of artificial intelligence and radiomics in oncology: focus on the three most common cancers. Radiol Med 127(8):819–836. https://doi.org/10.1007/s11547-022-01512-6

    Article  PubMed  Google Scholar 

  53. Mackin D, Fave X, Zhang L, Fried D, Yang J, Taylor B et al (2015) Measuring computed tomography scanner variability of radiomics features. Invest Radiol 50(11):757–765. https://doi.org/10.1097/rli.0000000000000180

    Article  PubMed  PubMed Central  Google Scholar 

  54. Berenguer R, Pastor-Juan MDR, Canales-Vázquez J, Castro-García M, Villas MV, Mansilla Legorburo F et al (2018) Radiomics of CT features may be nonreproducible and redundant: influence of CT acquisition parameters. Radiology 288(2):407–415. https://doi.org/10.1148/radiol.2018172361

    Article  PubMed  Google Scholar 

  55. Peng X, Yang S, Zhou L, Mei Y, Shi L, Zhang R et al (2022) Repeatability and reproducibility of computed tomography radiomics for pulmonary nodules: a multicenter phantom study. Invest Radiol 57(4):242–253. https://doi.org/10.1097/rli.0000000000000834

    Article  CAS  PubMed  Google Scholar 

  56. Li Y, Reyhan M, Zhang Y, Wang X, Zhou J, Zhang Y et al (2022) The impact of phantom design and material-dependence on repeatability and reproducibility of CT-based radiomics features. Med Phys 49(3):1648–1659. https://doi.org/10.1002/mp.15491

    Article  PubMed  Google Scholar 

  57. Cardenas CE, Yang J, Anderson BM, Court LE, Brock KB (2019) Advances in auto-segmentation. Semin Radiat Oncol 29(3):185–197. https://doi.org/10.1016/j.semradonc.2019.02.001

    Article  PubMed  Google Scholar 

  58. Liu L, Wolterink JM, Brune C, Veldhuis RNJ (2021) Anatomy-aided deep learning for medical image segmentation: a review. Phys Med Biol. https://doi.org/10.1088/1361-6560/abfbf4

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (82202141), Sichuan Science and Technology Program (2021YFS0075, 2021YFS0225) and the Chengdu Science and Technology Program (2021-YF05-01507-SN).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. YL and JL involved in conceptualization, data curation, formal analysis, methodology, and writing—original draft; XY, FX, and LW performed the data curation and validation. The study was founded by JL and PZ. Writing—review & editing was performed by HQ, JR, and PZ. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Peng Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the Institutional Review Board of Sichuan Cancer Hospital & Institute, and the patient consent was waived because anonymized information was used for this retrospective study.

Informed consent

Patient consent was waived because anonymized information was used for this retrospective study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6970 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, J., Yang, X. et al. Radiomic and quantitative-semantic models of low-dose computed tomography for predicting the poorly differentiated invasive non-mucinous pulmonary adenocarcinoma. Radiol med 128, 191–202 (2023). https://doi.org/10.1007/s11547-023-01591-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-023-01591-z

Keywords

Navigation