Skip to main content

Advertisement

Log in

Dose reduction in spiral CT coronary angiography with dual-source equipment. Part I. A phantom study applying different prospective tube current modulation algorithms

Riduzione della dose in angiografia coronarica con TC spirale con apparecchiatura a doppia sorgente. Parte I. Studio su fantoccio della dose totale applicando differenti algoritmi di modulazione prospettica della corrente del tubo

  • Cardiac Radiology/Cardioradiologia
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

The authors sought to compare different algorithms for dose reduction in retrospectively echocardiographically (ECG)-gated dual-source computed tomography (CT) coronary angiography (DSCT-CA) in a phantom model.

Materials and methods

Weighted CT dose index (CTDI) was measured by using an anthropomorphic phantom in spiral cardiac mode (retrospective ECG gating) at five pitch values adapted with two heart-rate-adaptive ECG pulsing windows using four algorithms: narrow pulsing window, with tube current reduction to 20% (A) and 4% (B) of peak current outside the pulsing window; wide pulsing window, with tube current reduction to 20% (C) and 4% (D). Each algorithm was applied at different heart rates (45, 60, 75, 90, 120 bpm).

Results

Mean CTDI volume (CTDIvol) was 36.9±9.7 mGy, 23.9±5.6 mGy, 49.7±16.2 mGy and 38.5±12.3 mGy for A, B, C and D, respectively. Consistent dose reduction was observed with protocols applying the 4% tube current reduction (B and D). Using the conversion coefficient for the chest, the mean effective dose was the highest for C (9.6 mSv) and the lowest for B (4.6 mSv). Heart-ratedependent pitch values (pitch=0.2, 0.26, 0.34, 0.43, 0.5) and the use of heart-rate-adaptive ECG pulsing windows provided a significant decrease in the CTDIvol with progressively higher heart rates (45, 60, 75, 90, 120 bpm), despite using wider pulsing windows.

Conclusions

Radiation exposure with DSCT-CA using a narrow pulsing window significantly decreases when compared with a wider pulsing window. When using a protocol with reduced tube current to 4%, the radiation dose is significantly lower.

Riassunto

Obiettivi

Lo scopo di questo studio è valutare mediante un fantoccio gli algoritmi di riduzione della dose in angiografia coronarica con tomografia computerizzata a doppia sorgente (DSCT-CA) con modalità di scansione spirale.

Materiali e metodi

Sono stati valutati 4 protocolli electrocardiographic (ECG)-gated retrospettivo DSCT-CA delle arterie coronarie, acquisiti con pitch ECG adattativo e modulazione ECG prospettica della corrente del tubo. Nei protocolli A e B è stata utilizzata una finestra di pulsing stretta (narrow), con riduzione della corrente del tubo al 20% (A) e al 4% (B) del valore nominale della corrente, al di fuori della finestra di pulsing; nei protocolli C e D è stata utilizzata una finestra di pulsing ampia (wide), con riduzione della corrente del tubo al 20% (C) e al 4% (D) del valore nominale della corrente, al di fuori della finestra di pulsing.

Risultati

Il valore medio del computed tomography dose index volume (CTDIvol) è risultato 36,9±9,7 mGy e 23,9±5,6 mGy nei protocolli A e B, rispettivamente (r=0,97; p<0,005); 49,7±16,19 mGy e 38,5±12,25 mGy nei protocolli C e D, rispettivamente (r=1,0; p<0,005). Una consistente riduzione di dose è stata osservata con i protocolli di modulazione della corrente al 4% (B e D). Utilizzando il coefficiente di conversione per il torace, il valore medio di dose è stato maggiore nel protocollo C (9,6 mSv) e minore nel protocollo B (4,6 mSv). L’utilizzo del pitch ECG adattativo (pitch=0,2-0,26-0,34-0,43-0,5) e gli algoritmi di pulsing con finestra stretta forniscono una consistente riduzione della dose (vale a dire >60%) all’aumentare della frequenza cardiaca.

Conclusioni

In DSCT-CA, l’utilizzo di una finestra di pulsing stretta riduce significativamente la dose da radiazioni, se comparata ad una finestra di pulsing più ampia. Con l’utilizzo di un protocollo con modulazione della corrente al 4%, la dose di radiazione è significativamente minore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References/Bibliografia

  1. Fei X, Du X, Li P et al (2008) Effect of dose-reduced scan protocols on cardiac coronary image quality with 64-row MDCT: a cardiac phantom study. Eur J Radiol 67:85–91

    Article  PubMed  Google Scholar 

  2. Romagnoli A, Nisini A, Gandini R et al (2002) Multidetector row CT coronary angiography: technique and preliminary experience. Radiol Med 103:443–455

    CAS  PubMed  Google Scholar 

  3. Passariello R, De Santis M (2001) Coronary artery desease. Update and prospects of radiologic imaging with CT and MR. Radiol Med 101:411–423

    CAS  PubMed  Google Scholar 

  4. Luz O, Buchgeister M, Klabunde M et al (2007) Evaluation of dose exposure in 64-slice CT colonography. Eur Radiol 17:2616–2621

    Article  CAS  PubMed  Google Scholar 

  5. Schoepf UJ, Becker CR, Ohnesorge BM et al (2004) CT of coronary artery disease. Radiology 232:18–37

    Article  PubMed  Google Scholar 

  6. Cademartiri F, Luccichenti G, Marano R et al (2003) Non-invasive angiography of the coronary arteries with multislice computed tomography: state of the art and future prospect. Radiol Med 106:284–296

    CAS  PubMed  Google Scholar 

  7. Kopp AF, Schroeder S, Kuettner A et al (2001) Coronary arteries: retrospectively ECG-gated multi-detector row CT angiography with selective optimization of the image reconstruction window. Radiology 221:683–688

    Article  CAS  PubMed  Google Scholar 

  8. Gerber TC, Stratmann BP, Kuzo RS et al (2005) Effect of acquisition technique on radiation dose and image quality in multidetector row computed tomography coronary angiography with submillimeter collimation. Invest Radiol 40:556–563

    Article  PubMed  Google Scholar 

  9. Vogl TJ, Abolmaali ND, Diebold T et al (2002) Techniques for the detection of coronary artherosclerosis: multi-detector row CT coronary angiography. Radiology 223:212–220

    Article  PubMed  Google Scholar 

  10. Giesler T, Baum U, Ropers D et al (2002) Non invasive visualization of coronary artery using contrastenhanced multidetector CT: influence of heart rate on image quality and stenosis detection. AJR Am J Roentgenol 179:911–916

    PubMed  Google Scholar 

  11. Li ZL, Guo YK, Hu G et al (2008) Influence of cardiac rhythm on image quality of 64-slice multidetector-row CT coronary angiography and clinic value of post-processing technology with image. Sichuan Da Xue Xue Bao Yi Xue Ban 39:305–308

    PubMed  Google Scholar 

  12. Herzog C, Arning-Erb M, Zangos S et al (2006) Multi-detector row CT coronary angiography: influence of reconstruction technique and heart rate on image quality. Radiology 238:75–86

    Article  PubMed  Google Scholar 

  13. McCollough C, Primak A, Saba O et al (2007) Dose performance of a 64-channel dual-source CT scanner. Radiology 243: 775–784

    Article  PubMed  Google Scholar 

  14. Primak AN, McCollough CH, Bruesewitz MR et al (2006) Relationship between noise, dose, and pitch in cardiac multi-detector row CT. RadioGraphics 26:1785–1794

    Article  PubMed  Google Scholar 

  15. Francone M, Napoli A, Carbone I et al (2007) Noninvasive imaging of the coronary arteries using a 64-row multidetector CT scanner: initial clinical experience and radiation dose concerns. Radiol Med 112:31–46

    Article  CAS  PubMed  Google Scholar 

  16. Nagatani Y, Takahashi M, Takazakura R et al (2007) Multidetector-row computed tomography coronary angiography: optimization of image reconstruction phase according to the heart rate. Circ J 71:112–121

    Article  PubMed  Google Scholar 

  17. Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268

    Article  PubMed  Google Scholar 

  18. Johnson TR, Nikolaou K, Wintersperger BJ et al (2006) Dual source CT cardiac imaging: initial experience. Eur Radiol 16:1409–1415

    Article  PubMed  Google Scholar 

  19. Scheffel H, Alkadhi H, Plass A et al (2006) Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol 16:2739–2747

    Article  PubMed  Google Scholar 

  20. Stolzmann P, Scheffel H, Schertler T et al (2007) Radiation dose estimates in dual-source computed tomography coronary angiography. Eur Radiol 18:592–599. DOI 10.1007/s00330-007-0786-8

    Article  PubMed  Google Scholar 

  21. Ropers U, Ropers D, Pflederer T et al (2007) Influence of heart rate on the diagnostic accuracy of dual-source computed tomography coronary angiography. J Am Coll Cardiol 50:2393–2398

    Article  PubMed  Google Scholar 

  22. Leschka S, Scheffel H, Desbiolles L et al (2007) Image quality and reconstruction intervals of dual-source CT coronary angiography: recommendations for ECG-pulsing windowing. Invest Radiol 42:543–549

    Article  PubMed  Google Scholar 

  23. Weustink AC, Mollet NR, Pugliese F et al (2008) Optimal electrocardiographic pulsing windows and heart rate: effect on image quality and radiation exposure at dual-source coronary CT angiography. Radiology 248:792–798

    Article  PubMed  Google Scholar 

  24. Garcia MJ (2006) Clinical experience and progress of computed tomographic coronary angiography. Coron Artery Dis 17:99–105

    Article  PubMed  Google Scholar 

  25. Kuettner A, Beck T, Drosch T et al (2005) Image quality and diagnostic accuracy of non-invasive coronary imaging with 16 detector slice spiral computed tomography with 188 ms temporal resolution. Heart 91:938–941

    Article  CAS  PubMed  Google Scholar 

  26. Siriapisith T, Wasinrat J (2008) Comparison of image quality of coronary CT angiography between 16 and 64 slices MDCT. J Med Assoc Thai 91:364–371

    PubMed  Google Scholar 

  27. Kopp AF, Heuschmid M, Reimann A et al (2005) Advances in imaging protocols for cardiac MDCT: from 16- to 64-row multidetector computed tomography. Eur Radiol 15 [Suppl 5]:E71–E77

    Google Scholar 

  28. Flohr TG, Stierstorfer K, Ulzheimer S et al (2005) Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot. Med Phys 32:2536–2547

    Article  CAS  PubMed  Google Scholar 

  29. Hirai N, Horiguchi J, Fujioka C et al (2008) Prospective versus retrospective ECG-gated 64-detector coronary CT angiography: assessment of image quality, stenosis, and radiation dose. Radiology 248:424–430

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Cademartiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martini, C., Palumbo, A., Maffei, E. et al. Dose reduction in spiral CT coronary angiography with dual-source equipment. Part I. A phantom study applying different prospective tube current modulation algorithms. Radiol med 114, 1037–1052 (2009). https://doi.org/10.1007/s11547-009-0437-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-009-0437-z

Keywords

Parole chiave

Navigation