Skip to main content

Advertisement

Log in

Multi slice computed tomography in the study of pulmonary metastases

TCMS nello studio delle metastasi polmonari

  • Chest Radiology/Radiologia Toracica
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

This study was undertaken to assess the performance of 16-slice computed tomography (MSCT) using Multi-Planar Reformatting (MPR), Maximum Intensity Projection (MIP) and Volume Rendering (VR) reconstructions to study pulmonary metastases.

Materials and methods

CT studies of 32 patients with pulmonary metastases were retrospectively reviewed. Images were assessed for the following parameters: number, size, location, distribution of the nodules and the presence of the “mass-vessel sign”. These parameters were evaluated by two observers on axial-source images and on MPR, MIP and VR reconstructions. Sensitivity of each reconstruction and interobserver agreement were calculated.

Results

Two-dimensional (2D) axial images and MIP and VR reconstructions exhibited 100% sensitivity for lesions >10 mm. For nodules 6–10 mm, sensitivity was 49%–55% for the 2D images, 90% for MIP and 80%–85% for VR reconstructions. For metastasis ≤5 mm, sensitivity was 22% for 2D images, 87%–89% for MIP and 55%–58% for VR reconstructions. Coronal and sagittal MPR, MIP and VR did not improve the detection rate compared with the corresponding axial images. MIP and VR provided overlapping results in detecting the “mass-vessel sign”.

Conclusions

MIP are the most sensitive reconstructions for detecting small pulmonary nodules.

Riassunto

Obiettivo

Valutare le potenzialità della tomografia computerizzata a 16 strati (TCMS) utilizzando le ricostruzioni Multi-Planar Reformatting (MPR), Maximum Intensity Projection (MIP) and Volume Rendering (VR) nello studio delle metastasi polmonari.

Materiali e metodi

È stato eseguito uno studio retrospettivo su 32 pazienti con metastasi polmonari. Sono stati valutati per ogni paziente i seguenti parametri: numero, dimensione, localizzazione, distribuzione dei noduli e presenza del “segno del vaso”. Tali parametri, sono stati analizzati da due osservatori nelle immagini assiali, MPR, MIP e VR. Sono state calcolate sensibilità di ciascuna ricostruzione e concordanza tra i due osservatori.

Risultati

Per lesioni >10 mm le immagini assiali 2D, MIP e VR hanno presentato sensibilità del 100%; per noduli di 6–10 mm le 2D del 49%–55%, le MIP del 90% e le VR dell’80%–85%; per metastasi =5 mm le 2D del 22%, le MIP del 87%–89%, le VR del 55%–58%. Le immagini coronali e sagittali MPR, MIP e VR non hanno fornito alcun incremento diagnostico rispetto alle assiali corrispondenti. Le MIP e le VR sono risultate sovrapponibili nel riconoscimento del “segno del vaso”.

Conclusioni

Le MIP sono le ricostruzioni più sensibili nel riconoscimento dei piccoli noduli polmonari.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References/Bibliografia

  1. Davis S (1991) CT evaluation for pulmonary metastases in patients with extrathoracic malignancy. Radiology 180:1–12

    PubMed  CAS  Google Scholar 

  2. De Wever W, Ceyssens S, Mortelmans L et al (2007) Additional value of PETCT in the staging of lung cancer: comparison with CT alone, Pet alone and visual correlation of PET and CT. Eur Radiol 17:23–32

    Article  PubMed  Google Scholar 

  3. Aquino SL (2005) Imaging of metastatic disease to the thorax; Radiol Clin North Am 43:481–495

    Article  PubMed  Google Scholar 

  4. Muhm JR, Brown LR, Crowe JK (1977) Detection of pulmonary nodules by computed tomography. AJR Am J Roentgenol 128:267–270

    PubMed  CAS  Google Scholar 

  5. Peuchot M, Libshitz HI (1987) Pulmonary metastatic disease: radiologic-surgical correlation. Radiology 164:719–722

    PubMed  CAS  Google Scholar 

  6. Friedmann G, Bohndorf K, Krüger J (1986) Radiology of pulmonary metastases: comparison of imaging techniques with operative findings. Thorac Cardiovasc Surg 34:120–124

    Article  PubMed  Google Scholar 

  7. Ko JP, Naidich DP (2003) Lung nodule detection and characterization with multislice CT. Radiol Clin N Am 41:575–597

    Article  PubMed  Google Scholar 

  8. Remy-Jardin M, Remy J, Giraud F, Marquette CH (1993) Pulmonary nodules: detection with thick-section spiral CT versus conventional CT. Radiology 187:513–520

    PubMed  CAS  Google Scholar 

  9. Collie DA, Wright AR, Williams JR et al (1994) Comparison of spiralacquisition computed tomography and conventional computed tomography in the assessment of pulmonary metastatic disease. Br J Radiol 67:436–444

    PubMed  CAS  Google Scholar 

  10. Gruden JF, Ouanounou S, Tigges S et al (2002) Incremental benefit of maximum-intensity-projection images on observer detection of small pulmonary nodules revealed by multidetector CT. AJR Am J Roentgenol 179:149–157

    PubMed  Google Scholar 

  11. Diederich S, Semik M, Lentshig M et al (1999) Helical CT of pulmonary nodules in patients with extrathoracic malignancy: CT-surgical correlation. AJR Am J Roentgenol 172:353–360

    PubMed  CAS  Google Scholar 

  12. Croiselle P, Souto M, Cova M et al (1995) Pulmonary nodules: improved detection with vascular segmentation and extraction with spiral CT-work in progress. Radiology 197:397–401

    Google Scholar 

  13. Beigelman-Aubry C, Hill C, Guibal A et al (2005) Multidetector row CT and post processing technique in the assessment of diffuse lung disease. Radiographics 25:1639–1652

    Article  PubMed  Google Scholar 

  14. Spencer H (1985) Secondary tumours in the lung. In: Pathology of the lung. 4th ed. Pergamon, Oxford, pp 1085–1096

    Google Scholar 

  15. Abrahms HL, Spiro R, Goldstein N (1989) Metastases in carcinoma: analysis of 1000 autopsied cases. Cancer 3:74–85

    Article  Google Scholar 

  16. Willis RA (1973) The spread of tumours in the human body, 3d ed. Butterworths, London, pp 167–174

    Google Scholar 

  17. Buthiau D, Breau JL, Piette JC et al (1998) Pulmonary metastasis. In: Buthiau D, Khayat D (eds) CT and MRI in oncology. Springer-Verlag Berlin, Heidelberg, New York, pp 156

    Google Scholar 

  18. Naidich DP, Zerhouni EA, Siegelman SS (1984) Computed tomography of the thorax. Raven, New York, pp 171–199

    Google Scholar 

  19. Mitchell DM, Shah SH, Edwards D et al (1986) Incidence of pulmonary nodules detected by computed tomography in patients with bronchial carcinoma. Clin Radiol 37:151–152

    Article  PubMed  CAS  Google Scholar 

  20. Chang AE, Schaner EG, Conkle DM et al (1979) Evaluation of computed tomography in the detection of pulmonary metastases: a prospective study. Cancer 43:913–916

    Article  PubMed  CAS  Google Scholar 

  21. Friese SA, Rieber A, Fleiter T et al (1994) Pulmonary nodules in spiral volumetric and single slice CT. Eur J Radiol 18:48–51

    Article  PubMed  CAS  Google Scholar 

  22. Wormanns D, Diederich S, Lentschig MG et al (2000) Spiral CT of pulmonary nodules: interobserver variation in assessment of lesion size. Eur Radiol 10:710–713

    Article  PubMed  CAS  Google Scholar 

  23. Buckley JA, Scott WW, Siegelmann SS et al (1995) Pulmonary nodules: effect of increased data sampling on detection of spiral CT and confidence in diagnosis. Radiology 196:395–400

    PubMed  CAS  Google Scholar 

  24. Diederich S, Lentischig MG, Winter F et al (1999) Detection of pulmonary nodules with overlapping versus nonoverlapping image reconstruction at spiral CT. Eur Radiol 9:281–286

    Article  PubMed  CAS  Google Scholar 

  25. Paranjpe DV, Bergin CJ (1994) Spiral CT of the lungs: optimal technique and resolution compared with conventional CT. AJR Am J Roentgenol 162:561–567

    PubMed  CAS  Google Scholar 

  26. Diederich S, Lentschig MG, Overbeck TR et al (2001) Detection of pulmonary at spiral CT: comparison of maximum intensity projection sliding slabs and single image reporting. Eur Radiol 11:1345–1350

    Article  PubMed  CAS  Google Scholar 

  27. Eibel R, Turk TR, Kulinna C et al (2001) Multidetector-row CT of the lungs: multiplanar reconstructions and maximum intensity projections of the detection of the pulmonary nodules. Rofo 173:815–821

    PubMed  CAS  Google Scholar 

  28. Valencia R, Denecke T, Lehmkuhl L et al (2006) Value of axial and coronal MIP images in the detection of pulmonary nodules by multislice spiral CT: comparison with axial 1 mm and 5 mm slices. Eur Radiol 16:325–332

    Article  PubMed  Google Scholar 

  29. Coakley FV, Cohen MD, Johnson MS et al (1998) Maximum intensity projection images in the detection of simulated pulmonary nodules by spiral CT. Br J Radiol 71:135–140

    PubMed  CAS  Google Scholar 

  30. Peloshek P, Sailer J, Weber M et al (2007) Pulmonary nodules: sensitivity of Maximum Intensity Projection versus that of Volume Rendering of 3D multidetector CT data. Radiology 243:561–569

    Article  Google Scholar 

  31. Jankowski A, Martinelli T, Timsit JF et al (2007) Pulmonary nodule detection MDCT images evaluation of diagnostic performances using than axial images, MIP and CAD. Eur Radiol 17:3148–3156

    Article  PubMed  CAS  Google Scholar 

  32. Lee KW, Kim M, Gierada DS et al (2007) Performance of a computeraided program for automated matching of metastatic pulmonary nodules detected on follow-up chest CT. AJR Am J Roentgenol 189:1077–1081

    Article  PubMed  Google Scholar 

  33. Brown MS, Goldin JG, Suh RD et al (2003) Lung micronodules: automated method for detection at thin section CT-initial experience. Radiology 226:256–262

    Article  PubMed  Google Scholar 

  34. Bae KT, Kim JS, Na YH et al (2005) Pulmonary nodules: automated detection on CT images with morphologic matching algorithmpreliminary results. Radiology 236:286–293

    Article  PubMed  Google Scholar 

  35. Yuan R, Vos PM, Cooperberg PL (2006) Computer-aided detection in screening CT for pulmonary nodules. AJR Am J Roentgenol 186:1280–1287

    Article  PubMed  Google Scholar 

  36. Saba L, Caddeo MD, Mallarini G (2007) Computer-aided detection of pulmonary nodules in computer tomography: analysis and review of the literature. J Comput Assist Tomogr 31:611–619

    Article  PubMed  Google Scholar 

  37. Rubin GD, Lyo JK, Paik DS et al (2005) Pulmonary nodules on multidetector row CT scans: performance comparison of radiologist and computer-aided detection. Radiology 234:274–283

    Article  PubMed  Google Scholar 

  38. Gotway MB, Reddy GP, Webb WR et al (2005) High resolution CT of the lung: patterns of disease and differential diagnosis. Radiol Clin of N Am 43:513–542

    Article  Google Scholar 

  39. Gruden JF, Webb WR, Naidich DP, Mc Guinness G (1999) Multinodular disease: anatomic localization at thin section CT. Multireader evaluation of a simple algorithm. Radiology 210:711–720

    PubMed  CAS  Google Scholar 

  40. Lee KS, Kim T, Han J et al (1999) Diffuse micronodular lung disease: HRCT and pathologic findings. J Comput Assist Tomogr 23:99–106

    Article  PubMed  CAS  Google Scholar 

  41. Zerhouni EA, Naidich DP, Stitik FP et al (1987) CT of the pulmonary parenchyma. J Thorac Imag 2:15–23

    Google Scholar 

  42. Murata K, Takahashi M, Mori M et al (1992) Pulmonary metastatic nodules CT-pathologic correlation. Radiology 182:331–335

    PubMed  CAS  Google Scholar 

  43. Raoof S, Amechentsev A, Vlahos I et al (2006) Pictorial essay: multinodular disease. A high-resolution CT scans diagnostic algorithm. Chest 129:805–815

    Article  PubMed  Google Scholar 

  44. Milne EN, Zerhouni EA (1987) Blood supply of pulmonary metastases. J Thorac Imaging 2:15–23

    Article  PubMed  CAS  Google Scholar 

  45. Meziane MA, Hruban RH, Zerhouni EA et al (1988) High Resolution CT of the lung parenchyma with pathologic correlation. Radiographics 8:27–54

    PubMed  CAS  Google Scholar 

  46. Dodd JD, Souza CA, Müller NL (2006) High resolution MDCT of pulmonary septic embolism: evaluation of the feeding vessel sign. AJR Am J Roentgenol 187:623–629

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Angelelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angelelli, G., Grimaldi, V., Spinelli, F. et al. Multi slice computed tomography in the study of pulmonary metastases. Radiol med 113, 954–967 (2008). https://doi.org/10.1007/s11547-008-0313-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-008-0313-z

Keywords

Parole chiave

Navigation