Skip to main content
Log in

On-the-go Phenotyping in Field Potatoes Using Camera Vision

  • Published:
Potato Research Aims and scope Submit manuscript

Abstract

A camera sensor for detecting crop parameters, with the aim of implementing precision plant protection, has been developed at the Leibniz Institute for Agricultural Engineering. This sensor was tested in farmers’ potato fields regarding the phenotyping and monitoring of crop growth. Field trials were conducted in 2007, 2011 and 2012 to quantify the relationship between the sensor measurements of the coverage level by the green stem and leaf parts and two plant parameters: the fresh mass of the tops and the leaf area index. Within the fields, sampling points were chosen based on differences in crop development. At different dates, the sensor values (coverage level) and the two plant parameters were determined. Because of the shape of the obtained scatterplots between the two plant parameters and the coverage level, a linear regression model with a plateau was adapted. An on-the-go (on-line, real-time) technology for measuring the percentage of green coverage was tested to monitor the development of the potato crop during the growth period. The sensor was positioned on the left side of the tractor to scan the crop stand along transects. The coverage level was measured and recorded together with the geographical position using a data processing system. Areas showing different plant growth could be determined, as could differences in the temporal development of the crop in the various sections of the transect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anonymous (1999) SunScan user manual. Delta-T Devices, Cambridge

    Google Scholar 

  • Bravo C, Moshou D, West J, McCartney A, Ramon H (2003) Early disease detection in wheat fields using spectral reflectance. Biosyst Engng 84:137–145

    Article  Google Scholar 

  • Brown SCM, Quegan S, Morrison K, Bennet JC, Cookmartin G (2003) High-resolution measurements of scattering in wheat canopies: implications for crop parameter retrieval. IEEE Trans Geosci Renote Sens 41:1602–1610

    Article  Google Scholar 

  • Burdon JJ, Chilvers GA (1982) Host density as a factor in plant disease ecology. Annu Rev Phytopathol 20:143–166

    Article  Google Scholar 

  • Dammer K-H (2005) On-the-go detection of plant parameters by camera vision in rape. In: Stafford JV (ed) Precision agriculture 05. Wageningen Academic Publishers, Wageningen, pp 289–296

    Google Scholar 

  • Dammer K-H, Ehlert D (2006) Variable rate fungicide spraying in cereals using a plant cover sensor. Precis Agricul 7:137–148

    Article  Google Scholar 

  • Dammer K-H, Thöle H, Volk T, Hau B (2009) Variable-rate fungicide spraying in real time by combining a plant cover sensor and a decision support system. Precis Agricul 10:431–442

    Article  Google Scholar 

  • Dammer K-H, Möller B, Rodemann B, Heppner D (2011) Detection of head blight (Fusarium spp.) in winter wheat by color and multispectral image analyses. Crop Protection 30:420–428

    Article  Google Scholar 

  • Dammer K-H, Böttger H, Wartenberg G, Rosenau R (2012) Echtzeitregelung der Applikationsmenge bei der Herbizidanwendung mit Hilfe eines Kamerasensors. Julius-Kühn-Archiv 434:191–198

    Google Scholar 

  • Dorrance AE, Inglis DA (1997) Assessment of greenhouse and laboratory screening methods for evaluating potato foliage for resistance to late blight. Plant Disease 10:1206–1213

    Article  Google Scholar 

  • Dworak V, Selbeck J, Ehlert D (2011) Ranging sensors for vehicle-based measurement of crop stand and orchard parameters: a review. Trans ASABE 54:1497–1510

    Article  Google Scholar 

  • Ehlert D (2011) Sensoren für Düngung und Pflanzenschutz. VDI-Berichte 2117:115–128

    Google Scholar 

  • Ehlert D, Dammer K-H (2006) Widescale testing of the Crop-meter for site-specific farming. Precis Agricul 7:101–115

    Article  Google Scholar 

  • Erdle K, Mistele B, Schmidhalter U (2011) Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars. Field Crop Res 124:74–84

    Article  Google Scholar 

  • Fry WE, Apple AE (1986) Disease implications of age-related changes in susceptibility of potato foliage to Phytophthora infestans. Am Potato J 63:47–56

    Article  Google Scholar 

  • Fry WE, Apple AE, Bruhn JA (1983) Evaluation of potato late blight forecasts to incorporate host resistance and fungicide weathering. Phytopathology 73:1054–1059

    Article  Google Scholar 

  • Garrett KA, Nelson RJ, Mundt CC, Chacon G, Jaramillo RE, Forbes GA (2001) The effects of host diversity and other management components on epidemics of potato late blight in the humid highland tropics. Phytopathology 91:993–1000

    Article  CAS  PubMed  Google Scholar 

  • Gutsche V, Kluge E (1995) Das neue Phytophthora-Prognoseverfahren SIMPHYT. Kartoffelbau 46:198–201

    Google Scholar 

  • Hospers-Brands AJTM, Ghorbani R, Bremer E, Bain R, Litterick A, Halder F, Leifert C, Wilcockson SJ (2008) Effects of presprouting, planting date, plant population and configuration on late blight and yield of organic potato crops grown with different cultivars. Potato Res 51(2):131–150

    Article  Google Scholar 

  • Karalus W (1998) Einfluss der Bestandesdichte auf den Krankheitsbefall bei Kartoffeln im ökologischen Landbau. Gesunde Pflanz 50(4):97–100

    Google Scholar 

  • Kurzawinska H, Kurzawinski J (1991) Wplyw niektorych czynnikow agrotechnicznych na porazenie naci i bulw wybranych odmian ziemniaka przez Phytophthora infestans (Mont.) de Bary. Zeszyty Naukowe Akademii Rolniczej im. Hugona Kollataja w Krakowie, Ogrodnictwo 19:81–90

    Google Scholar 

  • Lancashire PD, Bleiholder H, Langenlüddecke P, Stauss R, Vandenboom T, Weber E, Witzen-Berger A (1991) A uniform decimal code for growth stages of crops and weeds. Ann App Biol 119:561–610

    Article  Google Scholar 

  • Lapwood DH (1977) Factors affecting field infection of potato-tubers of different cultivars by blight (Phytohthora-infestans). Ann Appl Biol 85:23–42

    Article  Google Scholar 

  • Oerke EC, Gerhards R, Menz G, Sikora RA (2010) Precision crop protection—the challenge and use of heterogeneity. Springer, Dordrecht

    Book  Google Scholar 

  • Reckleben Y (2010) Sensorschwemme. Stickstoffdüngung mit Sensoren – welche gibt es und was können sie? Neue Landwirtschaft Heft 4:81–84

  • Schöber-Butin B, Schiff H (1998) Geschichte der Phytophthora-Negativ-Prognose. Mitt Biol Bundesanst Land-Forstwirtsch 335:31–38

    Google Scholar 

  • Scotford I, Miller P (2004) Combination of spectral reflectance and ultrasonic sensing to monitor the growth of winter wheat. Biosys Eng 87:27–38

    Article  Google Scholar 

  • Selbeck J, Dworak V, Ehlert D (2010) Testing a vehicle-based scanning lidar sensor for crop detection. Can J Rem Sens 36:24–35

    Article  Google Scholar 

  • Thoren D, Schmidhalter U (2009) Nitrogen status and biomass determination of oilseed rape by laser-induced chlorophyll fluorescence. Eur J Agron 30:238–242

    Article  CAS  Google Scholar 

  • Van de Zande JC, Achten VTJM, Kempenaar C et al (2009) SensiSpray: site-specific precise dosing of pesticides by on-line sensing. In: van Henten EJ, Goense D, Lokhorst C (eds) Precision agriculture’09. Wageningen Academic Publishers, Wageningen, pp 785–759

    Google Scholar 

  • Van de Zande JC, Achten VTJM, Schepers HTAM, Van der Lans A, Kempenaar K, Michielsen JGP, Stallinga H, Van Velde P (2010) Precision disease control in bed grown crops. In: Oerke E-C, Gerhards R, Menz G, Sikora RA (eds) Precision crop protection—the challenge and use of heterogeneity. Springer, Dordrecht, pp 403–415

    Chapter  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the staff of the Department for Engineering in Crop Production, the company Agrar GmbH Flämingland Blönsdorf and the Agrargenossenschaft Nuthequelle Niedergörsdorf for their technical assistance in measuring and analysing the field trials and finally also the editor and reviewers for improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Heinz Dammer.

Ethics declarations

We declare that the paper is in compliance with ethical standards.

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

The research has not involved human participants and/or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dammer, KH., Dworak, V. & Selbeck, J. On-the-go Phenotyping in Field Potatoes Using Camera Vision. Potato Res. 59, 113–127 (2016). https://doi.org/10.1007/s11540-016-9315-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11540-016-9315-y

Keywords

Navigation