Skip to main content

Computer Vision and Less Complex Image Analyses to Monitor Potato Traits in Fields

  • Protocol
  • First Online:
Solanum tuberosum

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2354))

  • 1208 Accesses

Abstract

Field phenotyping of crops has recently gained considerable attention leading to the development of new protocols for recording plant traits of interest. Phenotyping in field conditions can be performed by various cameras, sensors, and imaging platforms. In this chapter, practical aspects as well as advantages and disadvantages of aboveground phenotyping platforms are highlighted with a focus on drone-based imaging and relevant image analysis for field conditions. It includes useful planning tips for experimental design as well as protocols, sources, and tools for image acquisition, preprocessing, feature extraction, and machine learning highlighting the possibilities with computer vision. Several open and free resources are given to speed up data analysis for biologists.

This chapter targets professionals and researchers with limited computational background performing or wishing to perform phenotyping of field crops, especially with a drone-based platform. The advice and methods described focus on potato but can mostly be used for field phenotyping of any crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Roeder AHK, Cunha A, Burl MC, Meyerowitz EM (2012) A computational image analysis glossary for biologists. Development 139:3071–3080. https://doi.org/10.1242/dev.076414

    Article  CAS  PubMed  Google Scholar 

  2. Walter A, Liebisch F, Hund A (2015) Plant phenotyping: from bean weighing to image analysis. Plant Methods 11. https://doi.org/10.1186/s13007-015-0056-8

  3. Fahlgren N, Gehan MA, Baxter I (2015) Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Curr Opin Plant Biol 24:93–99. https://doi.org/10.1016/j.pbi.2015.02.006

    Article  PubMed  Google Scholar 

  4. Chawade A, Van Ham J, Blomquist H, Bagge O, Alexandersson E, Ortiz R (2019) High-throughput field-phenotyping tools for plant breeding and precision agriculture. Agronomy 9. https://doi.org/10.3390/agronomy9050258

  5. Gao J, Westergaard JC, Sundmark EHR, Bagge M, Liljeroth E, Alexandersson E (2021) Automatic late blight lesion recognition and severity quantification based on field imagery of diverse potato genotypes by deep learning. Knowl Based Syst 214:106723. https://doi.org/10.1016/j.knosys.2020.106723

    Article  Google Scholar 

  6. Franceschini MHD, Bartholomeus H, van Apeldoorn DF, Suomalainen J, Kooistra L (2019) Feasibility of unmanned aerial vehicle optical imagery for early detection and severity assessment of late blight in potato. Remote Sens 11. https://doi.org/10.3390/rs11030224

  7. Alexandersson E, Liljeroth E, Piikki K, Söderström M, Bagge O, Blomquist H, Persson M, Antkowiak P (2019) EnBlightMe!—an automated support system for potato late blight detection. https://www.vinnova.se/en/p/enblightme%2D%2D-an-automated-support-system-for-potato-late-blight-detection/. Accessed 5 Nov 2019

  8. Polder G, Blok PM, de Villiers HAC, van der Wolf JM, Kamp J (2019) Potato virus Y detection in seed potatoes using deep learning on hyperspectral images. Front Plant Sci 10:1–13. https://doi.org/10.3389/fpls.2019.00209

    Article  Google Scholar 

  9. Gao J, Liao W, Nuyttens D, Lootens P, Vangeyte J, Pižurica A, He Y, Pieters JG (2018) Fusion of pixel and object-based features for weed mapping using unmanned aerial vehicle imagery. Int J Appl Earth Obs Geoinf 67:43–53. https://doi.org/10.1016/j.jag.2017.12.012

    Article  Google Scholar 

  10. Sabzi S, Abbaspour-Gilandeh Y, García-Mateos G (2018) A fast and accurate expert system for weed identification in potato crops using metaheuristic algorithms. Comput Ind 98:80–89. https://doi.org/10.1016/j.compind.2018.03.001

    Article  Google Scholar 

  11. Azizi A, Abbaspour-Gilandeh Y, Nooshyar M, Afkari-Sayah A (2016) Identifying potato varieties using machine vision and artificial neural networks. Int J Food Prop 19:618–635. https://doi.org/10.1080/10942912.2015.1038834

    Article  Google Scholar 

  12. Su Q, Kondo N, Li M, Sun H, Al Riza DF, Habaragamuwa H (2018) Potato quality grading based on machine vision and 3D shape analysis. Comput Electron Agric 152:261–268. https://doi.org/10.1016/j.compag.2018.07.012

    Article  Google Scholar 

  13. Sankaran S, Khot LR, Espinoza CZ, Jarolmasjed S, Sathuvalli VR, Vandemark GJ, Miklas PN, Carter AH, Pumphrey MO, Knowles NR, Pavek MJ (2015) Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: a review. Eur J Agron 70:112–123. https://doi.org/10.1016/j.eja.2015.07.004

    Article  Google Scholar 

  14. Liu Z, Gao J, Yang G, Zhang H, He Y (2016) Localization and classification of paddy field pests using a saliency map and deep convolutional neural network. Sci Rep 6:20410. https://doi.org/10.1038/srep20410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. García-Santillán I, Peluffo-Ordoñez D, Caranqui V, Pusdá M, Garrido F, Granda P (2018) Computer vision-based method for automatic detection of crop rows in potato fields. In: Adv. intell. syst. comput., pp 355–366. https://doi.org/10.1007/978-3-319-73450-7_34

  16. Dijkstra K, van de Loosdrecht J, Schomaker LRB, Wiering MA (2019) Centroidnet: a deep neural network for joint object localization and counting. In: Eur. conf. mach. learn. princ. pract. knowl. discov. databases, pp 585–601. https://doi.org/10.1007/978-3-030-10997-4_36

  17. Madec S, Jin X, Lu H, De Solan B, Liu S, Duyme F, Heritier E, Baret F (2019) Ear density estimation from high resolution RGB imagery using deep learning technique. Agric For Meteorol 264:225–234. https://doi.org/10.1016/j.agrformet.2018.10.013

    Article  Google Scholar 

  18. Sara Mardanisamani FM, Kassani SH, Rajapaksa S, Duddu H, Wang M, Shirtliffe S, Ryu S, Josuttes A, Zhang T, Vail S, Pozniak C, Parkin I, Stavness I, Eramian M (2019) Crop lodging prediction from UAV-acquired images of wheat and canola using a DCNN augmented with handcrafted texture features. In: Proc. IEEE conf. comput. vis. pattern recognit. work.

    Google Scholar 

  19. Pantazi XE, Moshou D, Tamouridou AA (2019) Automated leaf disease detection in different crop species through image features analysis and one class classifiers. Comput Electron Agric 156:96–104. https://doi.org/10.1016/j.compag.2018.11.005

    Article  Google Scholar 

  20. Islam M, Dinh A, Wahid K, Bhowmik P (2017) Detection of potato diseases using image segmentation and multiclass support vector machine. In: Can. conf. electr. comput. eng. https://doi.org/10.1109/CCECE.2017.7946594

  21. Gao J (2020) An exploration of the use of machine learning techniques for site-specific weed management. PhD thesis, Ghent University, Ghent, Belgium

    Google Scholar 

  22. Gao JF, Zhang C, Xie CQ, Le Zhu F, Guo ZH, He Y (2015) Prediction of the soluble solid content in sugarcanes by using near infrared hyperspectral imaging system. Spectrosc Spectr Anal 35:2154–2158. https://doi.org/10.3964/j.issn.1000-0593(2015)08-2154-05

    Article  CAS  Google Scholar 

  23. López-López M, Calderón R, González-Dugo V, Zarco-Tejada PJ, Fereres E (2016) Early detection and quantification of almond red leaf blotch using high-resolution hyperspectral and thermal imagery. Remote Sens 8. https://doi.org/10.3390/rs8040276

  24. ten Harkel J (2019) High-throughput phenotyping and field-based biomass estimation for winter wheat, sugar beet and potatoes using UAV LiDAR. https://www.wur.nl/en/activity/High-throughput-phenotyping-and-field-based-biomass-estimation-for-winter-wheat-sugar-beet-and-potatoes-using-UAV-LiDAR.htm. Accessed 13 Nov 2019

  25. Svensgaard J, Jensen SM, Westergaard JC, Nielsen J, Christensen S, Rasmussen J (2019) Can reproducible comparisons of cereal genotypes be generated in field experiments based on UAV imagery using RGB cameras? Eur J Agron 106:49–57. https://doi.org/10.1016/j.eja.2019.03.006

    Article  Google Scholar 

  26. Zhang Y, Gao J, Cen H, Lu Y, Yu X, He Y, Pieters JG (2019) Automated spectral feature extraction from hyperspectral images to differentiate weedy rice and barnyard grass from a rice crop. Comput Electron Agric 159:42–49. https://doi.org/10.1016/j.compag.2019.02.018

    Article  Google Scholar 

  27. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66. https://doi.org/10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  28. Haralick R, Shanmugan K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3:610–621. https://doi.org/10.1109/TSMC.1973.4309314

    Article  Google Scholar 

  29. Gao J, Nuyttens D, Lootens P, He Y, Pieters JG (2018) Recognising weeds in a maize crop using a random forest machine-learning algorithm and near-infrared snapshot mosaic hyperspectral imagery. Biosyst Eng 170:39–50. https://doi.org/10.1016/j.biosystemseng.2018.03.006

    Article  Google Scholar 

  30. Lowe A, Harrison N, French AP (2017) Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Methods 13. https://doi.org/10.1186/s13007-017-0233-z

  31. Suh HK, Hofstee JW, IJsselmuiden J, van Henten EJ (2018) Sugar beet and volunteer potato classification using bag-of-visual-words model, scale-invariant feature transform, or speeded up robust feature descriptors and crop row information. Biosyst Eng 166:210–226. https://doi.org/10.1016/j.biosystemseng.2017.11.015

    Article  Google Scholar 

  32. Scharr H, Pridmore T, Tsaftaris SA (2017) Computer vision problems in plant phenotyping, CVPPP 2017: introduction to the CVPPP 2017 workshop papers. In: Proc. 2017 IEEE int. conf. comput. vis. work (ICCVW 2017). https://doi.org/10.1109/ICCVW.2017.236

Download references

Acknowledgments

This work was made possible through grants obtained from Nordic Council of Ministers (PPP #6P2), NordForsk (NordPlant #84597), UAS Ability (Danish Agency for Science, Technology and Innovation), Vinnova (#2016-04386), and SLU Grogrund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Alexandersson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gao, J., Westergaard, J.C., Alexandersson, E. (2021). Computer Vision and Less Complex Image Analyses to Monitor Potato Traits in Fields. In: Dobnik, D., Gruden, K., Ramšak, Ž., Coll, A. (eds) Solanum tuberosum. Methods in Molecular Biology, vol 2354. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1609-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1609-3_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1608-6

  • Online ISBN: 978-1-0716-1609-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics