Skip to main content

Advertisement

Log in

Parameter Identifiability in PDE Models of Fluorescence Recovery After Photobleaching

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Identifying unique parameters for mathematical models describing biological data can be challenging and often impossible. Parameter identifiability for partial differential equations models in cell biology is especially difficult given that many established in vivo measurements of protein dynamics average out the spatial dimensions. Here, we are motivated by recent experiments on the binding dynamics of the RNA-binding protein PTBP3 in RNP granules of frog oocytes based on fluorescence recovery after photobleaching (FRAP) measurements. FRAP is a widely-used experimental technique for probing protein dynamics in living cells, and is often modeled using simple reaction-diffusion models of the protein dynamics. We show that current methods of structural and practical parameter identifiability provide limited insights into identifiability of kinetic parameters for these PDE models and spatially-averaged FRAP data. We thus propose a pipeline for assessing parameter identifiability and for learning parameter combinations based on re-parametrization and profile likelihoods analysis. We show that this method is able to recover parameter combinations for synthetic FRAP datasets and investigate its application to real experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Alexander AM, Lawley SD (2022) Inferences from FRAP data are model dependent: a subdiffusive analysis. Biophys J 121(20):3795–3810

    Article  Google Scholar 

  • Audoly S, Bellu G, D’Angio L, Saccomani MP, Cobelli C (2001) Global identifiability of nonlinear models of biological systems. IEEE Trans Biomed Eng 48(1):55–65

    Article  Google Scholar 

  • Browning AP, Tască M, Falcó C, Baker RE (2023) Structural identifiability analysis of linear reaction-advection-diffusion processes in mathematical biology. arXiv preprint arXiv:2309.15326

  • Cabral SE, Otis JP, Mowry KL (2022) Multivalent interactions with RNA drive recruitment and dynamics in biomolecular condensates in Xenopus oocytes. iScience 25:104811

    Article  Google Scholar 

  • Chis O-T, Banga JR, Balsa-Canto E (2011) Structural identifiability of systems biology models: a critical comparison of methods. PloS ONE 6(11):27755

    Article  Google Scholar 

  • Cintrón-Arias A, Banks HT, Capaldi A, Lloyd AL (2009) A sensitivity matrix based methodology for inverse problem formulation

  • Ciocanel M-V, Kreiling JA, Gagnon JA, Mowry KL, Sandstede B (2017) Analysis of active transport by fluorescence recovery after photobleaching. Biophys J 112(8):1714–1725

    Article  Google Scholar 

  • Cobelli C, Distefano JJ 3rd (1980) Parameter and structural identifiability concepts and ambiguities: a critical review and analysis. Am J Physiol-Regul Integr Comp Physiol 239(1):7–24

    Article  Google Scholar 

  • Cox SM, Matthews PC (2002) Exponential time differencing for stiff systems. J Comput Phys 176(2):430–455

    Article  MathSciNet  Google Scholar 

  • Deschout H, Hagman J, Fransson S, Jonasson J, Rudemo M, Lorén N, Braeckmans K (2010) Straightforward FRAP for quantitative diffusion measurements with a laser scanning microscope. Opt Express 18(22):22886–22905

    Article  Google Scholar 

  • Eisenberg M (2019) Input-output equivalence and identifiability: some simple generalizations of the differential algebra approach. arXiv preprint arXiv:1302.5484

  • Eisenberg MC, Hayashi MA (2014) Determining identifiable parameter combinations using subset profiling. Math Biosci 256:116–126

    Article  MathSciNet  Google Scholar 

  • Eisenberg MC, Robertson SL, Tien JH (2013) Identifiability and estimation of multiple transmission pathways in cholera and waterborne disease. J Theor Biol 324:84–102

    Article  MathSciNet  Google Scholar 

  • Evans ND, Chappell MJ (2000) Extensions to a procedure for generating locally identifiable reparameterisations of unidentifiable systems. Math Biosci 168(2):137–159

    Article  MathSciNet  Google Scholar 

  • Geweke JF et al (1991) Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. Technical report, Federal Reserve Bank of Minneapolis

  • GitHub: Sample Matlab code for estimating parameters from FRAP microscopy data. GitHub (2020)

  • Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, Sethna JP (2007) Universally sloppy parameter sensitivities in systems biology models. PLoS Computat Biol 3(10):189

    Article  MathSciNet  Google Scholar 

  • Haario H, Laine M, Mira A, Saksman E (2006) DRAM: efficient adaptive MCMC. Stat Comput 16(4):339–354

    Article  MathSciNet  Google Scholar 

  • Hengl S, Kreutz C, Timmer J, Maiwald T (2007) Data-based identifiability analysis of non-linear dynamical models. Bioinformatics 23(19):2612–2618

    Article  Google Scholar 

  • Hines KE, Middendorf TR, Aldrich RW (2014) Determination of parameter identifiability in nonlinear biophysical models: a Bayesian approach. J General Physiol 143(3):401–416

    Article  Google Scholar 

  • Hong H, Ovchinnikov A, Pogudin G, Yap C (2020) Global identifiability of differential models. Commun Pure Appl Math 73(9):1831–1879

    Article  MathSciNet  Google Scholar 

  • Ishikawa-Ankerhold HC, Ankerhold R, Drummen GP (2012) Advanced fluorescence microscopy techniques-FRAP, FLIP, FLAP, FRET and FLIM. Molecules 17(4):4047–4132

    Article  Google Scholar 

  • Kassam A-K, Trefethen LN (2005) Fourth-order time-stepping for stiff PDEs. SIAM J Sci Comput 26(4):1214–1233

    Article  MathSciNet  Google Scholar 

  • Kenworthy AK (2023) What’s past is prologue: FRAP keeps delivering 50 years later. Biophys J 122:P3577-3586

    Article  Google Scholar 

  • Ljung L, Glad T (1994) On global identifiability for arbitrary model parametrizations. Automatica 30(2):265–276

    Article  MathSciNet  Google Scholar 

  • Miao H, Xia X, Perelson AS, Wu H (2011) On identifiability of nonlinear ode models and applications in viral dynamics. SIAM Rev 53(1):3–39

    Article  MathSciNet  Google Scholar 

  • Murphy SA, Van der Vaart AW (2000) On profile likelihood. J Am Stat Assoc 95(450):449–465

    Article  MathSciNet  Google Scholar 

  • Neil CR, Jeschonek SP, Cabral SE, O’Connell LC, Powrie EA, Otis JP, Wood TR, Mowry KL (2021) L-bodies are RNA-protein condensates driving RNA localization in Xenopus oocytes. Mol Biol Cell 32(22):37

    Article  Google Scholar 

  • Ollivier F (1990) Le problème de l’identifiabilité structurelle globale: approche théorique, méthodes effectives et bornes de complexité. PhD thesis, Palaiseau, Ecole polytechnique

  • Powrie EA, Ciocanel V, Kreiling JA, Gagnon JA, Sandstede B, Mowry KL (2016) Using in vivo imaging to measure RNA mobility in Xenopus laevis oocytes. Methods 98:60–65

    Article  Google Scholar 

  • Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, Timmer J (2009) Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 25(15):1923–1929

    Article  Google Scholar 

  • Raue A, Kreutz C, Theis FJ, Timmer J (2013) Joining forces of Bayesian and frequentist methodology: a study for inference in the presence of non-identifiability. Philos Trans R Soc A Math Phys Eng Sci 371(1984):20110544

    Article  MathSciNet  Google Scholar 

  • Reid J (1977) Structural identifiability in linear time-invariant systems. IEEE Trans Autom Control 22(2):242–246

    Article  MathSciNet  Google Scholar 

  • Renardy M, Kirschner D, Eisenberg M (2022) Structural identifiability analysis of age-structured PDE epidemic models. J Math Biol 84(1):1–30

    MathSciNet  Google Scholar 

  • Siekmann I, Sneyd J, Crampin EJ (2012) MCMC can detect nonidentifiable models. Biophys J 103(11):2275–2286

    Article  Google Scholar 

  • Simpson MJ, Baker RE, Vittadello ST, Maclaren OJ (2020) Practical parameter identifiability for spatio-temporal models of cell invasion. J R Soc Interface 17(164):20200055

    Article  Google Scholar 

  • Sprague BL, Pego RL, Stavreva DA, McNally JG (2004) Analysis of binding reactions by fluorescence recovery after photobleaching. Biophys J 86(6):3473–3495

    Article  Google Scholar 

Download references

Acknowledgements

Ding, Mastromatteo, and Reichheld were partially supported by the NSF under grant DMS-174429. Sandstede was partially supported by the NSF under grants DMS-2038039 and DMS-2106566. The experimental work was funded by R01GM071049 from the NIH to Mowry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria-Veronica Ciocanel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Derivation of the Sensitivity Equations

Appendix A: Derivation of the Sensitivity Equations

We provide details on deriving the sensitivity equations associated with PDE model system (1). Here, we show the derivation of the PDE equations for the sensitivities with respect to the diffusion coefficient D, since the other sensitivities can be derived in a similar way.

We first consider the PDE for the free protein concentration:

$$\begin{aligned} \frac{\partial f}{\partial t}&= D \Delta f -\beta _2 f + \beta _1 c \,. \end{aligned}$$
(29)

We denote \(f_D=\frac{\partial f}{\partial D}\) and \(c_D=\frac{\partial c}{\partial D}\). We differentiate equation (29) with respect to the diffusion coefficient D and assume that the protein concentrations are smooth and thus have continuous partial derivatives. Applying the chain rule yields:

$$\begin{aligned} \frac{\partial }{\partial D}\left( \frac{\partial f}{\partial t}\right) = \frac{\partial f_D}{\partial t}&= \frac{\partial }{\partial D}(D \Delta f) - \frac{\partial }{\partial D}(\beta _2 f) + \frac{\partial }{\partial D}(\beta _1 c) \nonumber \\&= (f_{xx}+f_{yy}) + D \frac{\partial }{\partial D}\left( f_{xx}+f_{yy}\right) - \beta _2 f_D + \beta _1 c_D \nonumber \\&= \Delta f + D \Delta f_D - \beta _2 f_D + \beta _1 c_D \,. \end{aligned}$$
(30)

Similarly, consider the PDE for the bound protein concentration:

$$\begin{aligned} \frac{\partial c}{\partial t}&= \beta _2 f - \beta _1 c\,. \end{aligned}$$
(31)

Differentiating this equation with respect to D yields the sensitivity equation:

$$\begin{aligned} \frac{\partial }{\partial D}\left( \frac{\partial c}{\partial t}\right) = \frac{\partial c_D}{\partial t}&= \beta _2 f_D - \beta _1 c_D \,. \end{aligned}$$
(32)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciocanel, MV., Ding, L., Mastromatteo, L. et al. Parameter Identifiability in PDE Models of Fluorescence Recovery After Photobleaching. Bull Math Biol 86, 36 (2024). https://doi.org/10.1007/s11538-024-01266-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-024-01266-4

Keywords

Navigation