Skip to main content
Log in

Forced Traveling Waves in a Reaction-Diffusion Equation with Strong Allee Effect and Shifting Habitat

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We study a reaction-diffusion equation that describes the growth of a population with a strong Allee effect in a bounded habitat which shifts at a speed \(c>0\). We demonstrate that the existence of forced positive traveling waves depends on habitat size L, and \(c^*\), the speed of traveling wave for the corresponding reaction-diffusion equation with the same growth function all over the entire unbounded spatial domain. It is shown that for \(c^*>c>0\) there exists a positive number \(L^*(c)\) such that for \(L>L^*(c)\) there are two positive traveling waves and for \(L<L^*(c)\) there is no positive traveling wave. It is also shown if \(c>c^*\) for any \(L>0\) there is no positive traveling wave. The dynamics of the equation are further explored through numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1:95–111

    Article  Google Scholar 

  • Allee WC, Emerson AE, Park O, Park T, Schmidt KP (1949) Principles of animal ecology. W. B Saunders, Philadelphia

    Google Scholar 

  • Ashih AC, Wilson WG (2001) Two-sex population dynamics in space: effects of gestation time on persistence. Theor Popul Biol 60:93–106

    Article  MATH  Google Scholar 

  • Benguria RD, Depassier MC (1996) Speed of fronts of the reaction-diffusion equation. Phys Rev Lett 77:1171–1173

    Article  MATH  Google Scholar 

  • Berestycki H, Ross L (2008) Reaction diffusion equations for population dynamics with forced speed. I. The case of the whole space. Discrete Contin Dyn Syst 21:41–67

    Article  MathSciNet  MATH  Google Scholar 

  • Berestycki H, Ross L (2009) Reaction diffusion equations for population dynamics with forced speed. II. Cylindrical type domains. Discrete Contin Dyn Syst 25:19–61

    Article  MathSciNet  MATH  Google Scholar 

  • Berestycki H, Diekmann O, Nagelkerke CJ, Zegeling PA (2009) Can a species keep pace with a shifting climate? Bull Math Biol 71:399–429

    Article  MathSciNet  MATH  Google Scholar 

  • Berestycki H, Fang J (2018) Forced waves of the Fisher-KPP equation in a shifting environment. J Diff Equ 264:2157–2183

    Article  MathSciNet  MATH  Google Scholar 

  • Bouhours J, T. Giletti T (2018) Spreading and vanishing for a monostable reaction diffusion equation with forced speed. J Dyn Diff Equ 31:247–286

  • Boukal DS, Berec L (2020) Single-species models of the Allee effect: extinction boundaries, sex ratios and mate encounters. J Theor Biol 218:375–394

    Article  MathSciNet  Google Scholar 

  • Cleland EE, Allen JM, Crimmins TM, Dunne JA, Pau S, Travers SE, Zavaleta ES, Wolkovich EM (2012) Phenological tracking enables positive species responses to climate change. Ecology 93:1765–1771

    Article  Google Scholar 

  • Courchamp F, Berec L, Gascoigne J (2008) Allee effects in ecology and conservation. Oxford University Press, New York

    Book  Google Scholar 

  • Hu C, Shang J, Li B (2020) Spreading speeds for reaction-diffusion equations with a shifting habitat. J Dy Diff Equ 32:1941–1964

    Article  MathSciNet  MATH  Google Scholar 

  • J. K. Hale JK, (1980) Ordinary Differential Equations. Krieger, Malabar, Florida

  • Du K, Peng R, Sun N (2019) The role of protection zone on species spreading governed by a reaction-diffusion model with strong Allee effect. J Diff Equ 266:7327–7356

    Article  MathSciNet  MATH  Google Scholar 

  • Fang J, Lou Y, Wu J (2016) Can pathogen spread keep pace with its host invasion? SIAM. J Appl Math 76:1633–1657

    MathSciNet  MATH  Google Scholar 

  • Fife P.C (1979) Mathematical aspects of reacting and diffusing systems, Springer-Verlag

  • Hadeler KP, Rothe F (1975) Travelling fronts in nonlinear diffusion equations. J Math Biol 2:251–263

    Article  MathSciNet  MATH  Google Scholar 

  • Hamel F (1997) Reaction-diffusion problems in cylinders with no invariance by translation. II. Monotone perturbations. Ann Inst H Poincaré Anal Non Linéaire 14:555–596

    Article  MathSciNet  MATH  Google Scholar 

  • Hamel F, Roques L (2011) Uniqueness and stability properties of monostable pulsating fronts. J Eur Math Soc 13:345–390

    Article  MathSciNet  MATH  Google Scholar 

  • Kanel’, (1962) On the stabilization of solutions of the Cauchy problem for the equations arising in the theory of combustion. Mat Sbornik 59:245–288

  • Kot M (2001) Elements of mathematical ecology. Cambridge University Press

    Book  MATH  Google Scholar 

  • Li B (2012) Traveling wave solutions in partially degenerate cooperative reaction-diffusion systems. J Diff Equ 252:4842–4861

    Article  MathSciNet  MATH  Google Scholar 

  • Li B, Bewick S, Shang J, Fagan WF (2014) Persistence and spread of a species with a shifting habitat edge. SIAM J Appl Math 74:1397–1417. Erratum to: Persistence and spread of a species with a shifting habitat edge. SIAM J. Appl. Math. 75 (2015) 2379-2380

  • Li B, Bewick S, Michael BR, Fagan WF (2016) Persistence and spreading speeds of integro-difference equations with an expanding or contracting habitat. Bull Math Biol 78:1337–1379

    Article  MathSciNet  MATH  Google Scholar 

  • Li B, Wu J (2020) Traveling waves in integro-difference equations with a shifting habitat. J Diff Equ 268:4059–4078

    Article  MathSciNet  MATH  Google Scholar 

  • Li B, Zhang M, Coffman B (2020) Can a barrier zone stop invasion of a population? J Math Biol 81:1193–1216

    Article  MathSciNet  MATH  Google Scholar 

  • Li B, Otto G (2022) Wave speed and critical patch size for integro-difference equations with a strong Allee effect. J Math Biol 85. https://doi.org/10.1007/s00285-022-01814-3

  • Li WT, Wang JB, Zhao XQ (2018) Spatial dynamics of a nonlocal dispersal population model in a shifting environment. J Nonlinear Sci 28:1189–1219

    Article  MathSciNet  MATH  Google Scholar 

  • Livshultz T, Mead JV, Goyder DJ, Brannin M (2011) Climate niches of milkweeds with plesiomorphic traits (Secamonoideae; Apocynaceae) and the milkweed sister group link ancient African climates and floral evolution. Am J Botany 98:1966–77

    Article  Google Scholar 

  • MacDonald JS, Lutscher F (2018) Individual behavior at habitat edges may help populations persist in moving habitats. J Math Biol 77:2049–2077

    Article  MathSciNet  MATH  Google Scholar 

  • Maciel GA, Coutinho RM, Kraenkel RA (2018) Critical patch-size for two-sex populations. Math Biosci 300:138–144

    Article  MathSciNet  MATH  Google Scholar 

  • Miller TEX, Shaw AK, Inouye BD, Neubert MG (2011) Sex-biased dispersal and the speed of two-sex invasions. Am Naturalist 177:549–561

    Article  Google Scholar 

  • Nagumo J, Yoshizawa S, Arimoto S (1965) Bistable transmission lines. IEEE Trans Circuit Theory CT-12:400-412

  • Parker IM (2004) Mating patterns and rates of biological invasion. Proc Natl Acad Sci USA 101:13695–13696

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Ann Rev Ecol Evol System 37:637–669

    Article  Google Scholar 

  • Pouchol C, Trélat E, Zuazua E (2019) Phase portrait control for 1D monostable bistable reaction-diffusion equations. Nonlinearity 32:884–909

    Article  MathSciNet  MATH  Google Scholar 

  • Potapov AB, Lewis MA (2004) Climate and competition: the effect of moving range boundaries on habitat invasibility. Bull Math Biol 66:975–1008

    Article  MathSciNet  MATH  Google Scholar 

  • Samuel AK, Chandler RB (2021) An experimental test of the Allee effect range limitation hypothesis. J Anim Ecol 90:585–593

    Article  Google Scholar 

  • Shanks AL, Walser A, Shanks L (2014) Population structure, northern range limit, and recruitment variation in the intertidal limpet Lottia scabra. Mar Biol 161:1073–1086

    Article  Google Scholar 

  • Valladares F, Matesanz S, Guilhaumon F et al (2014) The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol Lett 17:1351–1364

    Article  Google Scholar 

  • Walther G-R, Post E, Convey P, Menzel A, Parmesa C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  Google Scholar 

  • Wood C, Fitt RNL, Lancaster LT (2019) Evolving social dynamics prime thermal tolerance during a poleward range shift. Biol J Linn Soc 126:574–586

    Article  Google Scholar 

  • Zhou Y, Kot M (2011) Discrete-time growth-dispersal models with shifting species ranges. Theor Ecol 4:13–25

    Article  Google Scholar 

Download references

Acknowledgements

B. Li was partially supported by the National Science Foundation under Grant DMS-1951482.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garrett Otto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Otto, G. Forced Traveling Waves in a Reaction-Diffusion Equation with Strong Allee Effect and Shifting Habitat. Bull Math Biol 85, 121 (2023). https://doi.org/10.1007/s11538-023-01221-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-023-01221-9

Keywords

Mathematics Subject Classification

Navigation