Skip to main content
Log in

Boolean Models of the Transport, Synthesis, and Metabolism of Tryptophan in Escherichia coli

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The tryptophan (trp) operon in Escherichia coli codes for the proteins responsible for the synthesis of the amino acid tryptophan from chorismic acid, and has been one of the most well-studied gene networks since its discovery in the 1960s. The tryptophanase (tna) operon codes for proteins needed to transport and metabolize it. Both of these have been modeled individually with delay differential equations under the assumption of mass-action kinetics. Recent work has provided strong evidence for bistable behavior of the tna operon. The authors of Orozco-Gómez et al. (Sci Rep 9(1):5451, 2019) identified a medium range of tryptophan in which the system has two stable steady-states, and they reproduced these experimentally. In this paper, we will show how a Boolean model can capture this bistability. We will also develop and analyze a Boolean model of the trp operon. Finally, we will combine these two to create a single Boolean model of the transport, synthesis, and metabolism of tryptophan. In this amalgamated model, the bistability disappears, presumably reflecting the ability of the trp operon to produce tryptophan and drive the system toward homeostasis. All of these models have longer attractors that we call “artifacts of synchrony”, which disappear in the asynchronous automata. This curiously matches the behavior of a recent Boolean model of the arabinose operon in E. coli, and we discuss some open-ended questions that arise along these lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Albert R, Othmer H (2003) The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J Theor Biol 223(1):1–18

    Article  MathSciNet  MATH  Google Scholar 

  • Bliss R, Painter P, Marr A (1982) Role of feedback inhibition in stabilizing the classical operon. J Theor Biol 97(2):177–193

    Article  Google Scholar 

  • Davidich M, Bornholdt S (2008) Boolean network model predicts cell cycle sequence of fission yeast. PLOS ONE 3(2):e1672

    Article  Google Scholar 

  • Didier G, Remy E, Chaouiya C (2011) Mapping multivalued onto Boolean dynamics. J Theor Biol 270(1):177–184

    Article  MathSciNet  MATH  Google Scholar 

  • Dimitrova E, Jarrah A, Laubenbacher R, Stigler B (2007) A Gröbner fan method for biochemical network modeling. In: Proceedings of the international symposium on Symbolic and algebraic computation. ACM, pp 122–126

  • Fauré A, Naldi A, Chaouiya C, Thieffry D (2006) Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 22(14):e124–e131

    Article  Google Scholar 

  • Gong F, Ito K, Nakamura Y, Yanofsky C (2001) The mechanism of tryptophan induction of tryptophanase operon expression: tryptophan inhibits release factor-mediated cleavage of TnaC-peptidyl-tRNAPro. Proc Natl Acad Sci 98(16):8997–9001

    Article  Google Scholar 

  • Goodwin B (1965) Oscillatory behavior in enzymatic control processes. Adv Enzym Regul 3:425–437

    Article  Google Scholar 

  • Grayson D, Stillman M (2002) Macaulay2, a software system for research in algebraic geometry. https://faculty.math.illinois.edu/Macaulay2/

  • Gu P, Yang F, Li F, Liang Q, Qi Q (2013) Knocking out analysis of tryptophan permeases in Escherichia coli for improving L-tryptophan production. Appl Microbiol Biotechnol 97(15):6677–6683

    Article  Google Scholar 

  • Jacob F, Perrin D, Sánchez C, Monod J (1960) L’opéron: groupe de gènes à expression coordonnée par un opérateur. C R Acad Sci 250:1727–1729

    Google Scholar 

  • Jenkins A, Macauley M (2017) Bistability and asynchrony in a Boolean model of the L-arabinose operon in Escherichia coli. Bull Math Biol 79(8):1778–1795

    Article  MathSciNet  MATH  Google Scholar 

  • Laubenbacher R, Stigler B (2004) A computational algebra approach to the reverse engineering of gene regulatory networks. J Theor Biol 229(4):523–537

    Article  MathSciNet  MATH  Google Scholar 

  • Laubenbacher R, Sturmfels B (2009) Computer algebra in systems biology. Am Math Mon 882–891

  • Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle network is robustly designed. Proc Acad Natl Sci 101(14):4781–4786

    Article  Google Scholar 

  • Li G, Young K (2014) A cAMP-independent carbohydrate-driven mechanism inhibits tnaA expression and TnaA enzyme activity in Escherichia coli. Microbiology 160(9):2079–2088

    Article  Google Scholar 

  • Li G, Young K (2015) A new suite of tnaA mutants suggests that Escherichia coli tryptophanase is regulated by intracellular sequestration and by occlusion of its active site. BMC Microbiol 15(1):1–17

    Article  Google Scholar 

  • Macauley M, Robeva R (2020) Algebraic models, inverse problems, and pseudomonomials from biology. Lett Biomath 7(1):81–104

    Google Scholar 

  • Mackey M, Santillán M, Yildirim N (2004) Modeling operon dynamics: the tryptophan and lactose operons as paradigms. C R Biol 327(3):211–224

    Article  Google Scholar 

  • Matsushiro A, Sato K, Ito J, Kida S, Imamoto F (1965) On the transcription of the tryptophan operon in Escherichia coli: I. The tryptophan operator. J Mol Biol 11(1):54–63

    Article  Google Scholar 

  • Mendoza L, Thieffry D, Alvarez-Buylla E (1999) Genetic control of flower morphogenesis in Arabidopsis thaliana: a logical analysis. Bioinformatics 15(7):593–606

    Article  Google Scholar 

  • Mendoza L, Xenarios I (2006) A method for the generation of standardized qualitative dynamical systems of regulatory networks. Theor Biol Med Model 3:13

    Article  Google Scholar 

  • Murrugarra D, Veliz-Cuba A, Aguilar B, Arat S, Laubenbacher R (2012) Modeling stochasticity and variability in gene regulatory networks. EURASIP J Bioinform Syst Biol 2012(1):1–11

    Article  Google Scholar 

  • Müssel C, Hopfensitz M, Kestler H (2010) BoolNet-an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics 26(10):1378–1380

    Article  Google Scholar 

  • Nelson D, Cox M, Lehninger AL (2005) Principles of biochemistry, vol 1, no 1.1, 4th edn. WH Freeman and Company, New York, p 2

  • Orozco-Gómez D, Sosa-Hernández J, Gallardo-Navarro Ó, Santana-Solano J, Santillán M (2019) Bistable behaviour and medium-dependent post-translational regulation of the tryptophanase operon regulatory pathway in Escherichia coli. Sci Rep 9(1):5451

    Article  Google Scholar 

  • Remy É, Ruet P, Thieffry D (2008) Graphic requirements for multistability and attractive cycles in a Boolean dynamical framework. Adv Appl Math 41(3):335–350

    Article  MathSciNet  MATH  Google Scholar 

  • Richard A (2010) Negative circuits and sustained oscillations in asynchronous automata networks. Adv Appl Math 44(4):378–392

    Article  MathSciNet  MATH  Google Scholar 

  • Robert R (1980) Iterations sur des ensembles finis et automates cellulaires contractants. Linear Algebra Appl 29:393–412

    Article  MathSciNet  MATH  Google Scholar 

  • Robeva R, Hodge T (2013) Mathematical concepts and methods in modern biology: using modern discrete models. Academic Press

  • Robeva R, Macauley M (2018) Algebraic and combinatorial computational biology. Elsevier

  • Saez-Rodriguez J et al (2007) A logical model provides insights into T cell receptor signaling. PLoS Comput Biol 3(8):e163

    Article  MathSciNet  Google Scholar 

  • Santillán M, Mackey M (2001) Dynamic regulation of the tryptophan operon: a modeling study and comparison with experimental data. Proc Natl Acad Sci 98(4):1364–1369

    Article  Google Scholar 

  • Shmulevich I, Dougherty E (2010) Probabilistic Boolean networks: the modeling and control of gene regulatory networks. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Simao E, Remy E, Thieffry D, Chaouiya C (2005) Qualitative modelling of regulated metabolic pathways: application to the tryptophan biosynthesis in E. coli. Bioinformatics 21(2):190–196

  • Stoll G, Naldi A, Noël V, Viara E, Barillot E, Kroemer G, Thieffry D, Calzone L (2022) UPMaBoSS: a novel framework for dynamic cell population modeling. Front Mol Biosci 9:800152

    Article  Google Scholar 

  • Stoll G, Viara E, Barillot E, Calzone L (2012) Continuous time Boolean modeling for biological signaling: application of Gillespie algorithm. BMC Syst Biol 6(1):116

    Article  Google Scholar 

  • Thomas R, d’Ari R (1990) Biological feedback. CRC Press, Boca Raton

  • Veliz-Cuba A, Stigler B (2011) Boolean models can explain bistability in the lac operon. J Comput Biol 18(6):783–794

    Article  MathSciNet  Google Scholar 

  • Yanofsky C, Horn V, Gollnick P (1991) Physiological studies of tryptophan transport and tryptophanase operon induction in Escherichia coli. J Bacteriol 173(19):6009–6017

    Article  Google Scholar 

  • Yanofsky C, Kelley R, Horn V (1984) Repression is relieved before attenuation in the trp operon of Escherichia coli as tryptophan starvation becomes increasingly severe. J Bacteriol 158(3):1018–1024

    Article  Google Scholar 

  • Yildirim N (2012) Mathematical modeling of the low and high affinity arabinose transport systems in Escherichia coli. Mol BioSyst 8(4):1319–1324

    Article  Google Scholar 

  • Yildirim N, Mackey M (2003) Feedback regulation in the lactose operon: a mathematical modeling study and comparison with experimental data. Biophys J 84(5):2841–2851

    Article  Google Scholar 

  • Yildirim N, Santillan M, Horike D, Mackey M (2004) Dynamics and bistability in a reduced model of the lac operon. Chaos 14(2):279–292

    Article  MathSciNet  MATH  Google Scholar 

  • Zander D, Samaga D, Straube R, Bettenbrock K (2017) Bistability and nonmonotonic induction of the lac operon in the natural lactose uptake system. Biophys J 112(9):1984–1996

    Article  Google Scholar 

  • Zheng D, Constantinidou C, Hobman J, Minchin S (2004) Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Res 32(19):5874–5893

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Macauley.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The second author thanks the Simons Foundation (Collaboration Grant #358242).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deal, I., Macauley, M. & Davies, R. Boolean Models of the Transport, Synthesis, and Metabolism of Tryptophan in Escherichia coli. Bull Math Biol 85, 29 (2023). https://doi.org/10.1007/s11538-023-01122-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-023-01122-x

Keywords

Mathematics Subject Classification

Navigation