Skip to main content

Advertisement

Log in

A Mosquito Population Suppression Model by Releasing Wolbachia-Infected Males

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Due to the role of cytoplasmic incompatibility (CI), releasing Wolbachia-infected male mosquitoes into the wild becomes a very promising strategy to suppress the wild mosquito population. When developing a mosquito suppression strategy, our main concerns are how often, and in what amount, should Wolbachia-infected mosquitoes be released under different CI intensity conditions, so that the suppression is most effective and cost efficient. In this paper, we propose a mosquito population suppression model that incorporates suppression and self-recovery under different CI intensity conditions. We adopt the new modeling idea that only sexually active Wolbachia-infected male mosquitoes are considered in the model and assume the releases of Wolbachia-infected male mosquitoes are impulsive and periodic with period T. We particularly study the case where the release period is greater than the sexual lifespan of the Wolbachia-infected male mosquitoes. We define the CI intensity threshold, mosquito release thresholds, and the release period threshold to characterize the model dynamics. The global and local asymptotic stability of the origin and the existence and stability of T-periodic solutions are investigated. Our findings provide useful guidance in designing practical release strategies to control wild mosquitoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  • Ai S, Li J, Yu J, Zheng B (2022) Stage-structured models for interactive wild and periodically and impulsively released sterile mosquitoes. Discrete Contin Dyn Syst Ser B 27:3039–3052

    Article  MathSciNet  Google Scholar 

  • Bhatt S, Gething P, Brady O et al (2013) The global distribution and burden of dengue. Nature 496:504–507

    Article  Google Scholar 

  • Cai L, Ai S, Li J (2014) Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes. SIAM J Appl Math 74:1786–1809

    Article  MathSciNet  Google Scholar 

  • Hu L, Huang M, Tang M, Yu J, Zheng B (2015) Wolbachia spread dynamics in stochastic environments. Theor Popul Biol 106:32–44

    Article  Google Scholar 

  • Hu L, Tang M, Wu Z, Xi Z, Yu J (2019) The threshold infection level for Wolbachia invasion in random environments. J Differ Equ 266:4377–4393

    Article  MathSciNet  Google Scholar 

  • Hu L, Yang C, Hui Y, Yu J (2021) Mosquito control based on pesticides and endosymbiotic bacterium Wolbachia. Bull Math Biol 83:58

    Article  MathSciNet  Google Scholar 

  • Huang M, Tang M, Yu J (2014) Wolbachia infection dynamics by reaction-diffusion equations. Sci China Math 58:77–96

    Article  MathSciNet  Google Scholar 

  • Li J (2016) New revised simple models for interactive wild and sterile mosquito populations and their dynamics. J Biol Dyn 11:1–18

    MathSciNet  Google Scholar 

  • Li J, Ai S (2020) Impulsive releases of sterile mosquitoes and interactive dynamics with time delay. J Biol Dyn 14:289–307

    Article  MathSciNet  Google Scholar 

  • Li Y, Li J (2018) Discrete-time models for releases of sterile mosquitoes with Beverton-Holt-type of survivability. Ricerche Mat 67:141–162

    Article  MathSciNet  Google Scholar 

  • Li J, Yuan Z (2015) Modelling releases of sterile mosquitoes with different strategies. J Biol Dyn 9:1–14

    Article  MathSciNet  Google Scholar 

  • Li Y, Li J (2018) Discrete-time model for malaria transmission with constant releases of sterile mosquitoes. J Biol Dyn, 1–22

  • Liu Y, Jiao F, Hu L (2022) Modeling mosquito population control by a coupled system. J Math Anal Appl. https://doi.org/10.1016/j.jmaa.2021.125671

    Article  MathSciNet  MATH  Google Scholar 

  • Qu Z, Xue L, Hyman JM (2017) Modeling the transmission of Wolbachia in mosquitoes for controlling mosquito-borne diseases. SIAM J Appl Math 78:826–852

    Article  MathSciNet  Google Scholar 

  • Song L (2017) China Focus: China’s mosquito warriors fight global epidemic. http://news.xinhuanet.com/english/2017-06/29/c_136403687.htm

  • Turelli M, Hoffmann AA (1991) Rapid spread of an inherited incompatibility factor in California Drosophila. Nature 353:440–442

    Article  Google Scholar 

  • VDCI, Understanding the Life Cycle of the Mosquito, https://www.vdci.net/mosquito-biology-101-life-cycle/

  • White SM, Rohani P, Sait SM (2010) Modelling pulsed releases for sterile insect techniques: fitness costs of sterile and transgenic males and the effects on mosquito dynamics. J Appl Ecol 47:1329–1339

    Article  Google Scholar 

  • WHO (2022) Dengue and severe dengue. http://www.who.int/mediacentre/factsheets/fs117/en/

  • Xue L, Manore CA, Thongsripong P, Hyman JM (2017) Two-sex mosquito model for the persistence of Wolbachia. J Biol Dyn 11:216–237

    Article  MathSciNet  Google Scholar 

  • Yu J (2018) Modeling mosquito population suppression based on delay differential equations. SIAM J Appl Math 78:3168–3187

    Article  MathSciNet  Google Scholar 

  • Yu J (2020) Existence and stability of a unique and exact two periodic orbits for an interactive wild and sterile mosquito model. J Differ Equ 269:10395–10415

    Article  MathSciNet  Google Scholar 

  • Yu J, Li J (2019) Dynamics of interactive wild and sterile mosquitoes with time delay. J Biol Dyn 13:606–620

    Article  MathSciNet  Google Scholar 

  • Yu J, Li J (2020) Global asymptotic stability in an interactive wild and sterile mosquito model. J Differ Equ 269:6193–6215

    Article  MathSciNet  Google Scholar 

  • Yu J, Li J (2022) A delay suppression model with sterile mosquitoes release period equal to wild larvae maturation period. J Math Biol 84(3):19

    Article  MathSciNet  Google Scholar 

  • Yu J, Li J (2022) Discrete-time models for interactive wild and sterile mosquitoes with general time steps. Math Biosci 346:108797

    Article  MathSciNet  Google Scholar 

  • Zhang X, Zhang D (2019) Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 572:56–61

    Article  Google Scholar 

  • Zheng B (2022) Impact of releasing period and magnitude on mosquito population in a sterile release model with delay. J Math Biol 85:18

    Article  MathSciNet  Google Scholar 

  • Zheng B, Yu J (2022) Existence and uniqueness of periodic orbits in a discrete model on Wolbachia infection frequency. Adv Nonlinear Anal 11:212–224

    Article  MathSciNet  Google Scholar 

  • Zheng B, Yu J (2022) At most two periodic solutions for a switching mosquito population suppression model. J Dyn Differ Equ. https://doi.org/10.1007/s10884-021-10125-y

    Article  Google Scholar 

  • Zheng B, Tang M, Yu J (2014) Modeling wolbachia spread in mosquitoes through delay differential equations. SIAM J Appl Math 74:743–770

    Article  MathSciNet  Google Scholar 

  • Zheng B, Tang M, Yu J, Qiu J (2018) Wolbachia spreading dynamics in mosquitoes with imperfect maternal transmission. J Math Biol 76:235–263

    Article  MathSciNet  Google Scholar 

  • Zheng B, Yu J, Li J (2021) Modeling and analysis of the implementation of the Wolbachia incompatible and sterile insect technique for mosquito population suppression. SIAM J Appl Math 81:718–740

    Article  MathSciNet  Google Scholar 

  • Zheng B, Li J, Yu J (2022) One discrete dynamical model on Wolbachia infection frequency in mosquito populations. Sci China Math 65:1749–1764

    Article  MathSciNet  Google Scholar 

  • Zheng B, Li J, Yu J (2022) Existence and stability of periodic solutions in a mosquito population suppression model with time delay. J Differ Equ 315:159–178

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (12071095, 12171112). The authors thank two anonymous reviewers for their careful reading and valued comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianshe Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

To prove Theorems 3.1, 3.2 and 3.3, we need the following five lemmas which play an important role in their proofs.

Lemma 5.1

For any given initial value \(u>0\),

  1. (i)

    If \(h(u)>u\), then sequence \(\{h_{n}(u)\}^{+\infty }_{0}\) and \(\{{\bar{h}}_{n}(u)\}^{+\infty }_{0}\) are strictly increasing.

  2. (ii)

    If \(h(u)=u\), then \(h_{n}(u)=u\) for \(n=0,1,2,\cdots .\) Furthermore, w(t; 0, u) is a T-periodic solution of system (2).

  3. (iii)

    If \(h(u)<u\), then sequence \(\{h_{n}(u)\}^{+\infty }_{0}\) and \(\{{\bar{h}}_{n}(u)\}^{+\infty }_{0}\) are strictly decreasing.

  4. (iv)

    We must have \(\lim _{n\rightarrow \infty }h_{n}(u)=l,\) where l satisfies \(h(l)=l.\)

Proof

The proofs of (i), (ii) and (iii) come from Lemma 3.1 of Yu and Li (2020). We focus on the proof of part (iv).

If \(h(u)=u\), then the conclusion follows immediately.

Suppose \(h(u)>u\). Then, from part (i), sequence \(\{h_{n}(u)\}^{+\infty }_{0}\) is strictly increasing. Furthermore, we must have \(0<u<M\) and \(0<h_{n}(u)<M,~n=0,1,2\cdots .\) Hence, \(\{h_{n}(u)\}^{+\infty }_{0}\) is a monotonically increasing sequence with an upper bound. Then, there exists \(l\ge 0\) such that \(\lim _{n\rightarrow \infty }h_{n}(u)=l.\) Since \(h_{n+1}(u)=h(h_{n}(u))\), taking the limit of both sides, we have \(h(l)=l.\)

The proof for the case of \(h(u)<u\) can be done in a similar matter to the case \(h(u)>u\). We thus omit it. \(\square \)

Lemma 5.2

Assume that \(T>T^{*}.\) Then, the following statements hold.

  1. (a)

    If \(\frac{4s^*_{h}}{3}<s_{h}\le 1\) and \(c>c_{1}^{*},\) then Eq. (2) has a unique T-periodic solution.

  2. (b)

    If \(s_{h}\le \frac{4s^*_{h}}{3}\) and \(c>\widehat{c^*},\) then Eq. (2) has a unique T-periodic solution,

where \(s^*_{h}\), \(c_{1}^{*}\), and \(\widehat{c^*}\) are given in (9), (10), and (14).

Proof

We only focus on the proof of part (a). Part (b) can be proved in a similar way.

From (28), \(\lim \limits _{u\rightarrow 0}\frac{h(u)}{u}>1\) for \(T>T^{*}\). Hence, there is sufficiently small \(\delta >0\) such that

$$\begin{aligned} \begin{aligned} h(u)>u, \text {for}~u\in (0,\delta ). \end{aligned} \end{aligned}$$
(31)

Since \(c>c_{1}^{*}\), then solution \(w(t)=w(t;0,M)\) is strictly decreasing for \(t\in (0,{\bar{T}}]\). Hence, \({\bar{h}}(M)<M\), which implies that \(h(M)<M\). Therefore, there must be \(u_{0}\in (\delta ,M)\) such that \(h(u_{0})=u_{0}\) and

$$\begin{aligned} \begin{aligned} h(u)>u, \ \ \text {for}\ u\in (0,u_{0}). \end{aligned} \end{aligned}$$
(32)

Thus, \(w(t;0,u_{0})\) is a T-periodic solution of Eq. (2).

Now we prove the uniqueness of the T-periodic solution of Eq. (2) by contradiction.

Assume that Eq. (2) has another T-periodic solution \(u_{1}\in (u_{0},M)\) such that \(h(u_{1})=u_{1}\) and

$$\begin{aligned} \begin{aligned} h(u)<u,\ \ \text {for}\ u\in (u_{1},M). \end{aligned} \end{aligned}$$
(33)

It follows from (32) that there exists \(u_{2}\in [u_{0},u_{1}]\) such that one of the following cases is satisfied. (See also Fig 4).

$$\begin{aligned}&h'(u_{0})\le 1, \ h'(u_{2})\ge 1, \ h'(u_{1})\le 1. \end{aligned}$$
(34a)
$$\begin{aligned}&u_{0}=u_{2}, \ h'(u_{0})=1, \ h'(u_{1})\le 1. \end{aligned}$$
(34b)
$$\begin{aligned}&h'(u_{0})\le 1, \ u_{1}=u_{2}, \ h'(u_{1})=1. \end{aligned}$$
(34c)
$$\begin{aligned}&h'(u_{0})=h'(u_{2})=1, \ h'(u_{1})\le 1. \end{aligned}$$
(34d)
$$\begin{aligned}&h'(u_{0})=1,\ h'(u_{2})\le 1, \ h'(u_{1})=1. \end{aligned}$$
(34e)
$$\begin{aligned}&h'(u_{0})\le 1, \ h'(u_{2})=h'(u_{1})=1. \end{aligned}$$
(34f)
Fig. 4
figure 4

Figures (a)–(f) are for Cases (34a), (34b), (34c), (34d), (34e) and (34f), respectively

Since we assume \(c>c_{1}^{*},\) we prove (34) for \(c\in (c_{1}^{*},c_{2}^{*})\), \(c=c_{2}^{*}\), and \(c>c_{2}^{*}\), respectively, as in the following steps.

i) For the case \(c\in (c_{1}^{*},c_{2}^{*})\), we know \(B>0.\) Set

$$\begin{aligned} F(u)=u^{\alpha }\left( (u-A)^{2}+B\right) ^{\frac{\beta }{2}}e^{\frac{\gamma }{\sqrt{B}} \tan ^{-1}\left( \frac{u-A}{\sqrt{B}}\right) }. \end{aligned}$$

Simple calculation yields

$$\begin{aligned} F'(u)=\left( \frac{\alpha }{u}+\frac{\beta (u-A)+\gamma }{((u-A)^{2}+B)}\right) F(u). \end{aligned}$$

From (22), we have

$$\begin{aligned} F({\bar{h}}(u))=F(u)e^{-\xi {\bar{T}}}. \end{aligned}$$
(35)

Taking the derivative with respect to u in (35) yields

$$\begin{aligned} F'({\bar{h}}(u)){\bar{h}}'(u)=F'(u)e^{-\xi {\bar{T}}}, \end{aligned}$$

which implies that

$$\begin{aligned} \left( \frac{\alpha }{{\bar{h}}(u)}+\frac{\beta ({\bar{h}}(u)-A)+\gamma }{(({\bar{h}}(u)-A)^{2}+B)} \right) {\bar{h}}'(u)=\left( \frac{\alpha }{u}+\frac{\beta (u-A)+\gamma }{((u-A)^{2}+B)}\right) , \end{aligned}$$

or, equivalently,

$$\begin{aligned} {\bar{h}}'(u)=\frac{{\bar{h}}(u)(({\bar{h}}(u)-A)^{2}+B)(u+2c)}{u((u-A)^{2}+B)({\bar{h}}(u)+2c)}. \end{aligned}$$

Taking the derivative with respect to u in (25), we obtain

$$\begin{aligned} \frac{h'(u)}{h(u)(M-h(u))}=\frac{{\bar{h}}'(u)}{{\bar{h}}(u)(M-{\bar{h}}(u))}. \end{aligned}$$
(36)

By simple algebra, we have

$$\begin{aligned} h'(u)=\frac{h(u)\left[ \left( \left( mM-A(m-1)\right) h(u)-MA\right) ^{2}+B(M+(m-1)h(u))^{2}\right] (u+2c)}{uM\left[ (u-A)^{2}+B\right] \left[ 2Mc+(mM-2c(1-m))h(u)\right] },\nonumber \\ \end{aligned}$$
(37)

where \(m=e^{-M\xi (T-{\bar{T}})}.\) We further obtain

$$\begin{aligned} h'(u_{0})= & {} \dfrac{\left[ \left( (mM-A(m-1))u_{0}-MA\right) ^{2}+B(M+(m-1) u_{0})^{2}\right] (u_{0}+2c)}{M\left[ (u_{0}-A)^{2}+B\right] \left[ 2Mc+(mM-2c(1-m)) u_{0}\right] },\nonumber \\ h'(u_{1})= & {} \dfrac{\left[ \left( (mM-A(m-1))u_{1}-MA\right) ^{2}+B(M+(m-1) u_{1})^{2}\right] (u_{1}+2c)}{M\left[ (u_{1}-A)^{2}+B\right] \left[ 2Mc+(mM-2c(1-m)) u_{1}\right] },\nonumber \\ h'(u_{2})= & {} \dfrac{\left[ \left( (mM-A(m-1))u_{2}-MA\right) ^{2}+B(M+(m-1) u_{2})^{2}\right] (u_{2}+2c)}{M\left[ (u_{2}-A)^{2}+B\right] \left[ 2Mc+(mM-2c(1-m)) u_{2}\right] }.\nonumber \\ \end{aligned}$$
(38)

Case (34a) can be equivalently written as

$$\begin{aligned} \begin{aligned}&l_{1}u^{2}_{0}+l_{2}u_{0}+l_{3}\le 0,\\&l_{1}u^{2}_{1}+l_{2}u_{1}+l_{3}\le 0,\\&l_{1}u^{2}_{2}+l_{2}u_{2}+l_{3}\ge 0, \end{aligned} \end{aligned}$$

case (34b) can be equivalently written as

$$\begin{aligned} \begin{aligned}&l_{1}u^{2}_{0}+l_{2}u_{0}+l_{3}=0,\\&l_{1}u^{2}_{1}+l_{2}u_{1}+l_{3}\le 0, \end{aligned} \end{aligned}$$

case (34c) can be equivalently written as

$$\begin{aligned} \begin{aligned}&l_{1}u^{2}_{0}+l_{2}u_{0}+l_{3}\le 0,\\&l_{1}u^{2}_{1}+l_{2}u_{1}+l_{3}=0, \end{aligned} \end{aligned}$$

case (34d) can be equivalently written as

$$\begin{aligned} \begin{aligned}&l_{1}u^{2}_{0}+l_{2}u_{0}+l_{3}=0,\\&l_{1}u^{2}_{1}+l_{2}u_{1}+l_{3}\le 0,\\&l_{1}u^{2}_{2}+l_{2}u_{2}+l_{3}=0, \end{aligned} \end{aligned}$$

case (34e) can be equivalently written as

$$\begin{aligned} \begin{aligned}&l_{1}u^{2}_{0}+l_{2}u_{0}+l_{3}=0,\\&l_{1}u^{2}_{1}+l_{2}u_{1}+l_{3}=0,\\&l_{1}u^{2}_{2}+l_{2}u_{2}+l_{3}\le 0, \end{aligned} \end{aligned}$$

and case (34f) can be equivalently written as

$$\begin{aligned} \begin{aligned}&l_{1}u^{2}_{0}+l_{2}u_{0}+l_{3}\le 0,\\&l_{1}u^{2}_{1}+l_{2}u_{1}+l_{3}=0,\\&l_{1}u^{2}_{2}+l_{2}u_{2}+l_{3}=0, \end{aligned} \end{aligned}$$

where

$$\begin{aligned}&l_{1}=(A^{2}+B)(1-m)+(2mMA+2cM-mM^{2}), \end{aligned}$$
(39)
$$\begin{aligned}&l_{2}=[2c(A^{2}+B)-4cMA](1-m)-[2cM^{2}(m+1)+2M(A^{2}+B)], \end{aligned}$$
(40)
$$\begin{aligned}&l_{3}=[-2cM(A^{2}+B)+4M^{2}Ac+M^{2}(A^{2}+B)]. \end{aligned}$$
(41)

Set

$$\begin{aligned} P(u)=l_{1}u^{2}+l_{2}u+l_{3}. \end{aligned}$$
(42)

Then,

$$\begin{aligned} P(M)=-(A^{2}+B)mM^{2}-2cmM(A^{2}+B)+(mM^{3}+2cmM^{2})(-M+2A).\nonumber \\ \end{aligned}$$
(43)

Since \(\frac{4s^*_{h}}{3}<s_{h}\le 1\) and \(c\in (c_{1}^{*},c_{2}^{*}),\) \(-M+2A<0,\) \(A^{2}+B>0.\) Hence, we have \(P(M)<0.\)

Now for \(c\in (c_{1}^{*},c_{2}^{*})\), we consider \(c\in (c^{*},c_{2}^{*})\), \(c=c^{*},\) and \(c\in (c_{1}^{*},c^{*})\), respectively.

ia) If \(c\in (c^{*},c_{2}^{*}),\) then

$$\begin{aligned} P(0)=l_{3}=\frac{(a-2\mu )[-8\xi ^{2}c^{2}-4a\xi s_{h}c +as_{h}(a-2\mu )]c}{4\xi ^3}<0. \end{aligned}$$

Hence, P(u) is a convex quadratic polynomial with \(l_{1}<0,\) \(l_{2}>0\) and \(l_{3}<0.\) On the other hand,

$$\begin{aligned} 0>2cl_{1}-l_{2}=4cMA+4c^{2}M+2cM^{2}+2M(A^{2}+B)=\frac{2M(\xi c^{2}+as_{h}c)}{\xi }>0, \end{aligned}$$

which leads to a contradiction. Thus, cases (34a)-(34f) cannot happen.

ib) If \(c=c^{*},\) then \(l_{3}=0,\) which implies that \(P(0)=0.\) Combined with \(P(M)<0\), we immediately know that cases (34a)-(34f) are impossible.

ic) Now, we consider the case \(c\in (c_{1}^{*},c^{*}).\) In this case, \(P(0)>0\)  and  \(P(M)<0.\) Then, clearly cases (34a), (34c), (34d), (34e) and (34f) are impossible. We then focus on case (34b).

For sufficiently small \(\varepsilon >0,\) we have \(m(1+\varepsilon )<1\) and

$$\begin{aligned} c<\frac{-as_{h}+(a-2\mu )(1-x)+\sqrt{[as_{h}-(a-2\mu )(1-x)]^{2}+2as_{h}(a-2\mu )x}}{4\xi },\nonumber \\ \end{aligned}$$
(44)

where \(x=\frac{1-m-m\varepsilon }{(1-m)(1+\varepsilon )}\). Furthermore, fix \(\varepsilon >0,\) such that \(h(u)-(1+\varepsilon )u\) has three roots \({\tilde{u}}_{1},\) \({\tilde{u}}_{2}\) and \({\tilde{u}}_{3}\) that satisfy

$$\begin{aligned} 0<{\tilde{u}}_{1}<u_{0}<{\tilde{u}}_{2}<{\tilde{u}}_{3}<u_{1} \end{aligned}$$

and

$$\begin{aligned} h'({\tilde{u}}_{1})\le 1+\varepsilon ,~h'({\tilde{u}}_{2})\ge 1+\varepsilon ,~h'({\tilde{u}}_{3})\le 1 +\varepsilon . \end{aligned}$$

From (37), we have

$$\begin{aligned}&\dfrac{h'({\tilde{u}}_{i})}{(1+\varepsilon )({\tilde{u}}_{i}+2c)}\nonumber \\&\quad =\dfrac{\left[ \left( \left( mM-A(m-1)\right) (1+\varepsilon ){\tilde{u}}_{i}-MA\right) ^{2} +B(M+(m-1)(1+\varepsilon ){\tilde{u}}_{i})^{2}\right] }{M\left[ ({\tilde{u}}_{i}-A)^{2} +B\right] \left[ 2Mc+(mM-2c(1-m))(1+\varepsilon ){\tilde{u}}_{i}\right] },\nonumber \\ \end{aligned}$$
(45)

for \(i=1,2,3.\) Similarly, we can obtain that

$$\begin{aligned} \begin{aligned} l_{1\varepsilon }{\tilde{u}}^{2}_{1}+l_{2\varepsilon }{\tilde{u}}_{1}+l_{3\varepsilon }\le 0,\\ l_{1\varepsilon }{\tilde{u}}^{2}_{2}+l_{2\varepsilon }{\tilde{u}}_{2}+l_{3\varepsilon }\le 0,\\ l_{1\varepsilon }{\tilde{u}}^{2}_{3}+l_{2\varepsilon }{\tilde{u}}_{3}+l_{3\varepsilon }\ge 0, \end{aligned} \end{aligned}$$
(46)

where

$$\begin{aligned} \begin{aligned} l_{1\varepsilon }=&(A^{2}+B)(1-m)^{2}(1+\varepsilon )^{2}\\&+(1+\varepsilon )[2mMA(1-m)(1+\varepsilon )+2cM-mM^{2}(1-m)(1-m-m\varepsilon )],\\ l_{2\varepsilon }=&[2c(A^{2}+B)(1-m)(1+\varepsilon ) -4cMA(1-m-m\varepsilon )](1-m)(1+\varepsilon )\\&-[2cM^{2}(1-m-m\varepsilon )(m+m\varepsilon +1)+2M(A^{2}+B)(1-m)], \end{aligned} \end{aligned}$$

and

$$\begin{aligned} l_{3\varepsilon }= & {} [-2cM(A^{2}+B)(1-m)(1+\varepsilon )+4M^{2}Ac(1-m-m\varepsilon )\\&+M^{2}(A^{2}+B)(1-m-m\varepsilon )]. \end{aligned}$$

Set

$$\begin{aligned} P_{\varepsilon }(u)=l_{1\varepsilon }u^{2}+l_{2\varepsilon }u+l_{3\varepsilon }. \end{aligned}$$
(47)

From (44), we have

$$\begin{aligned} P_{\varepsilon }(0)=l_{3\varepsilon }>0. \end{aligned}$$
(48)

and from (46), we see

$$\begin{aligned} P_{\varepsilon }({\tilde{u}}_{1})\le 0,~P_{\varepsilon }({\tilde{u}}_{2})\le 0,~P_{\varepsilon }({\tilde{u}}_{3})\ge 0. \end{aligned}$$
(49)

It thus follows that the quadratic polynomial \(P_{\varepsilon }(u)\) has a root in each of the three intervals \((0,{\tilde{u}}_{1}],\) \(({\tilde{u}}_{1},{\tilde{u}}_{2}]\) and \(({\tilde{u}}_{2},{\tilde{u}}_{3}]\). It is impossible.

ii) For the case \(c=c_{2}^{*},\) differentiating (24) with respect to u gives

$$\begin{aligned} \left( \frac{\alpha }{{\bar{h}}(u)}+\frac{\beta }{({\bar{h}}(u)-A)}+\frac{\gamma }{({\bar{h}}(u)-A)^{2}} \right) {\bar{h}}'(u)=\left( \frac{\alpha }{u}+\frac{\beta }{(u-A)}+\frac{\gamma }{(u-A)^{2}} \right) ,\nonumber \\ \end{aligned}$$
(50)

or, equivalently,

$$\begin{aligned} {\bar{h}}'(u)=\frac{{\bar{h}}(u)(({\bar{h}}(u)-A)^{2})(u+2c)}{u((u-A)^{2})({\bar{h}}(u)+2c)}. \end{aligned}$$

It follows from (36) and a series of computations that

$$\begin{aligned} h'(u)=\frac{h(u)\left[ \left( \left( mM-A(m-1)\right) h(u)-MA\right) ^{2}\right] (u+2c)}{uM\left[ (u-A)^{2}\right] \left[ 2Mc+(mM-2c(1-m))h(u)\right] }. \end{aligned}$$
(51)

Set

$$\begin{aligned} {\widetilde{P}}(u)={\widetilde{l}}_{1}u^{2}+{\widetilde{l}}_{2}u+{\widetilde{l}}_{3}, \end{aligned}$$
(52)

where

$$\begin{aligned} \begin{aligned}&{\widetilde{l}}_{1}=A^{2}(1-m)+(2mMA+2cM-mM^{2}),\\&{\widetilde{l}}_{2}=[2cA^{2}-4cMA](1-m)-[2cM^{2}(m+1)+2MA^{2}],\\&{\widetilde{l}}_{3}=-2cMA^{2}+4M^{2}Ac+M^{2}A^{2}<0~\hbox {when}~c=c_{2}^{*}. \end{aligned} \end{aligned}$$
(53)

We can get the contradiction by a similar argument as the proof of ia) .

iii) For the case \(c>c_{2}^{*},\) it is easy to see that \(B<0\). Set

$$\begin{aligned} {\widetilde{F}}(u)=u^{\theta }(u-E^{-}_{1}(c))^{\kappa }(u-E^{-}_{2}(c))^{\sigma } \text {for}~u\in (0,M). \end{aligned}$$
(54)

Then,

$$\begin{aligned} {\widetilde{F}}'(u)=[\frac{\theta }{u}+\frac{\kappa }{u-E^{-}_{1}(c)} +\frac{\sigma }{u-E^{-}_{2}(c)}]{\widetilde{F}}(u) ~\text {for}~u\in (0,M). \end{aligned}$$
(55)

From (23), we see

$$\begin{aligned} {\widetilde{F}}({\bar{h}}(u))={\widetilde{F}}(u)e^{-\xi {\bar{T}}}. \end{aligned}$$
(56)

Taking the derivative with respect to u in (56) yields

$$\begin{aligned} {\widetilde{F}}'({\bar{h}}(u)){\bar{h}}'(u)={\widetilde{F}}'(u)e^{-\xi {\bar{T}}}, \end{aligned}$$

which implies that

$$\begin{aligned}{}[\frac{\theta }{{\bar{h}}(u)}+\frac{\kappa }{{\bar{h}}(u)-E^{-}_{1}(c)} +\frac{\sigma }{{\bar{h}}(u)-E^{-}_{2}(c)}]{\bar{h}}'(u)=[\frac{\theta }{u} +\frac{\kappa }{u-E^{-}_{1}(c)}+\frac{\sigma }{u-E^{-}_{2}(c)}], \end{aligned}$$

or, equivalently,

$$\begin{aligned} \left[ \frac{{\bar{h}}(u)+2c}{{\bar{h}}(u)({\bar{h}}(u)-E^{-}_{1}(c))({\bar{h}}(u)-E^{-}_{2}(c))} \right] {\bar{h}}'(u)=\left[ \frac{u+2c}{u(u-E^{-}_{1}(c))(u-E^{-}_{2}(c))}\right] \end{aligned}$$

Similarly, (36) and a direct calculation gives

$$\begin{aligned} \begin{aligned}&\dfrac{h'(u)}{h(u)(u+2c)[-ME^{-}_{1}(c)+(mM+(1-m)E^{-}_{1}(c))h(u)]}\\&=\dfrac{[-ME^{-}_{2}(c)+(mM+(1-m)E^{-}_{2}(c))h(u)]}{uM(u-E^{-}_{1}(c))(u-E^{-}_{2} (c))[2cM+(mM-2c(1-m))h(u)]}, \end{aligned} \end{aligned}$$
(57)

Hence, set

$$\begin{aligned} Q(u)=q_{1}u^{2}+q_{2}u+q_{3}, \end{aligned}$$
(58)

where

$$\begin{aligned} q_{1}=-M^{2}m+mM(E_{1}(c)+E_{2}(c))+(1-m)E^{-}_{1}(c)E^{-}_{2}(c)+2cM,\quad \end{aligned}$$
(59)
$$\begin{aligned} \begin{array}{ll} q_{2}=&{}-2cM^{2}(m+1)-2cM(1-m)(E^{-}_{1}(c)+E^{-}_{2}(c))\\ &{}+[2c(1-m)-2M]E^{-}_{1}(c)E^{-}_{2}(c), \end{array}\quad \end{aligned}$$
(60)
$$\begin{aligned} q_{3}=M^{2}E^{-}_{1}(c)E^{-}_{2}(c)+2cM^{2}(E^{-}_{1}(c)+E^{-}_{2}(c))-2cME^{-}_{1}(c)E^{-}_{2}(c),\quad \end{aligned}$$
(61)

Furthermore, since \(c>c_{2}^{*},\) it immediately implies

$$\begin{aligned} \begin{aligned} q_{3}=l_{3}=\frac{(a-2\mu )[-8\xi ^{2}c^{3}-4a\xi s_{h}c^{2}+as_{h}c(a-2\mu )]}{4\xi ^{3}}<0. \end{aligned} \end{aligned}$$
(62)

Hence, we claim that cases (34a), (34b), (34c), (34d), (34e) and (34f) are impossible by a similar argument as the proof of ia) . \(\square \)

Lemma 5.3

Assume \(T=T^{*}.\) Then, the following statements hold.

  1. (a)

    Assume that \(\frac{4s^*_{h}}{3}<s_{h}\le 1\). Then,

    1. (1)

      If \(c_{1}^{*}<c<c^{*},\) Eq. (2) has a unique T-periodic solution.

    2. (2)

      If \(c\ge c^{*} \), \(h(u)<u\) for all \(u>0\).

  2. (b)

    Assume that \(s_{h}\le \frac{4s^*_{h}}{3}\) and \(c>\widehat{c^*},\) then \(h(u)<u\) for all \(u>0.\)

Proof

(a) (1) Since \(c_{1}^{*}<c<c^{*},\) then \(B>0.\) Hence, from (22) and (25), we see

$$\begin{aligned} \frac{h(u)}{u}=\frac{M-h(u)}{M-{\bar{h}}(u)}\cdot \frac{\left( (u-A)^{2}+B\right) ^{\frac{\beta }{2\alpha }}e^{\frac{\gamma }{\alpha \sqrt{B}}\tan ^{-1}\left( \frac{u-A}{\sqrt{B}}\right) }}{\left( ({\bar{h}}(u)-A)^{2}+B\right) ^{\frac{\beta }{2\alpha }}e^{\frac{\gamma }{\alpha \sqrt{B}} \tan ^{-1}\left( \frac{{\bar{h}}(u)-A}{\sqrt{B}}\right) }}. \end{aligned}$$
(63)

Set

$$\begin{aligned} \begin{aligned} G(u)=(M-u)^{\alpha }\left( (u-A)^{2}+B\right) ^{\frac{\beta }{2}}e^{\frac{\gamma }{\sqrt{B}} \tan ^{-1}\left( \frac{u-A}{\sqrt{B}}\right) }>0, \end{aligned} \end{aligned}$$
(64)

for \(u\in (0,M)\). Then,

$$\begin{aligned} \frac{h(u)}{u}=\frac{M-h(u)}{M-u}\cdot \left( \frac{G(u)}{G({\bar{h}}(u))}\right) ^{\frac{1}{\alpha }}. \end{aligned}$$
(65)

Thus, we have \(h(u)=u\) if and only if \(G(u)=G({\bar{h}}(u))\).

Since \(h(M)<M,\) the main idea of this proof is to determine \(h(u)>u\) for \(u\in (0,M)\).

Taking the derivative of G(u), we obtain

$$\begin{aligned} \begin{aligned} G'(u)&=\left[ \frac{(\beta M-1)u+M-2\beta AM-2c}{(M-u)[(u-A)^{2}+B]}\right] G(u)\\&=\frac{(\beta M-1)}{(M-u)[(u-A)^{2}+B]}(u-u^{*})G(u)\\&=\frac{-J_{2}(c)}{(M-u)[(u-A)^{2}+B]}(u-u^{*})G(u). \end{aligned} \end{aligned}$$
(66)

Here \(u^{*}\) is defined by

$$\begin{aligned} \begin{aligned} u^{*}=\frac{J_{1}(c)}{J_{2}(c)}=\frac{M-2\beta AM-2c}{1-\beta M}, \end{aligned} \end{aligned}$$
(67)

where

$$\begin{aligned} J_{1}(c)=M-2\beta AM-2c=\frac{-8\xi ^{2}c^{2}-4a\xi s_{h}c+as_{h}(a-2\mu )}{2\xi (2\xi c+2\mu -a(1-s_{h}))} \end{aligned}$$

and

$$\begin{aligned} J_{2}(c)=1-\beta M =\frac{2\xi c+as_{h}}{2\xi c+2\mu -a(1-s_{h})}. \end{aligned}$$

Clearly, \(J_{1}(c)>0\) and \(J_{2}(c)>0\) for \(\frac{4s^*_{h}}{3}<s_{h}\le 1\), and \(c_{1}^{*}<c<c^{*}.\) Thus, \(u^{*}>0\) for \(c_{1}^{*}<c<c^{*}\).

If \(c_{1}^{*}<c<c^{*},\) then G(u) is strictly increasing for \(u\in (0,u^{*})\), and strictly decreasing for \(u\in (u^{*},M),\) which immediately implies that \(G(u)>G({\bar{h}}(u))\) for \(u\in (0,u^{*})\).

Simple calculation yields

$$\begin{aligned} \frac{h(u)}{u}=\frac{M-h(u)}{M-u}\cdot \left( \frac{G(u)}{G({\bar{h}}(u))}\right) ^{\frac{1}{\alpha }}>\frac{M-h(u)}{M-u}~\hbox {for}~ u\in (0,u^{*}), \end{aligned}$$
(68)

which implies that \(h(u)>u\) for \(u\in (0,u^{*})\). Therefore, there must be \(u_{0}\in (0,M)\) such that

$$\begin{aligned} h(u_{0})=u_{0}~\text {and}~h(u)>u, ~\text {for}~u\in (0,u_{0}). \end{aligned}$$
(69)

We now prove the uniqueness of the T-periodic solution of Eq. (2) by contradiction. Assume that Eq. (2) has another T-periodic solution \(u_{1}\in (u_{0},M)\) such that

$$\begin{aligned} h(u_{1})=u_{1}~\text {and}~h(u)<u, ~\text {for}~u\in (u_{1},M). \end{aligned}$$
(70)

Based on the properties of function G(u), we have

$$\begin{aligned} u^{*}<u_{0}<u_{1}~\text {and}~u^{*}>{\bar{h}}(u_{0})>{\bar{h}}(u_{1}), \end{aligned}$$
(71)

and from the properties of function \({\bar{h}}(u)\), we have

$$\begin{aligned} u_{0}<u_{1}~\text {and}~{\bar{h}}(u_{0})<{\bar{h}}(u_{1}), \end{aligned}$$
(72)

which leads to a contradiction.

  1. (a)

    (2). The proof of case (2) of part (a) is similar to the proof of part (b) that follows. Thus, we omit its proof and focus on part (b) shown below.

  2. (b)

    . For \(s_{h}\in (s^*_{h},\frac{4s^*_{h}}{3})\), if \(c\in (\widehat{c^*},c_{1}^{*})~\hbox {or}~(c_{2}^{*},+\infty ),\) then \(B<0\). From (23) and (25), we obtain

    $$\begin{aligned} \frac{h(u)}{u}=\frac{M-h(u)}{M-{\bar{h}}(u)}\cdot \left( \frac{u-E^{-}_{1}(c)}{{\bar{h}}(u)-E^{-}_{1}(c)}\right) ^{\frac{\kappa }{\alpha }}\cdot \left( \frac{u-E^{-}_{2}(c)}{{\bar{h}}(u)-E^{-}_{2}(c)}\right) ^{\frac{\sigma }{\alpha }}. \end{aligned}$$
    (73)

If \(c=c_{1}^{*}~\hbox {or}~c=c_{2}^{*},\) then \(B=0\). Then, from (24) and (25), we have

$$\begin{aligned} \frac{h(u)}{u}=\frac{M-h(u)}{M-{\bar{h}}(u)}\cdot \left( \frac{u-A}{{\bar{h}}(u)-A} \right) ^{\frac{\beta }{\alpha }}\cdot \frac{e^{-\frac{\gamma }{\alpha (u-A)}}}{e^{-\frac{\gamma }{\alpha ({\bar{h}}(u)-A)}}}. \end{aligned}$$
(74)

If \(c\in (c_{1}^{*},c_{2}^{*}),\) then \(B>0\). Set

$$\begin{aligned} G_{1}(u)=(M-u)^{\alpha }\left( u-E^{-}_{1}(c)\right) ^{\kappa }\left( u-E^{-}_{2}(c)\right) ^{\sigma }>0, \end{aligned}$$
(75)

for \(u\in (0,M)\) and \(c\in (\widehat{c^*},c_{1}^{*})\cup (c_{2}^{*},+\infty )\), and

$$\begin{aligned} G_{2}(u)=(M-u)^{\alpha }\left( u-A\right) ^{\beta }e^{-\frac{\gamma }{(u-A)}}>0, \end{aligned}$$
(76)

for \(u\in (0,M)\) and \(c=c_{1}^{*}\), or \(c=c_{2}^{*}\).

Taking the derivative of \(G_{1}(u)\), we obtain,

$$\begin{aligned}&\frac{(M-u)(u-E^{-}_{1}(c))(u-E^{-}_{2}(c))G'_{1}(u)}{G_{1}(u)}\\&=[(M-u)(u-E^{-}_{1}(c))(u-E^{-}_{2}(c))]\left( \frac{-\alpha }{M-u}+\frac{\kappa }{u-E^{-}_{1}(c)}+\frac{\sigma }{u-E^{-}_{2}(c)}\right) \\&= \left[ \kappa (M-E^{-}_{1}(c))+\sigma (M-E^{-}_{2}(c))\right] u-[\frac{-2cM(E^{-}_{1}(c)+E^{-}_{2}(c))}{E^{-}_{1}(c)E^{-}_{2}(c)}-M+2c]\\&=\left[ \frac{-2\xi c-as_{h}}{2\xi c+2\mu -a(1-s_{h})}\right] u+\frac{-8\xi ^{2}c^{2}-4a\xi s_{h}c+as_{h}(a-2\mu )}{2\xi (2\xi c+2\mu -a(1-s_{h}))}\\&=-J_{2}(c)(u-u^{*}), \\ ~\text {for}~u\in&(0,M)~\text {and}~c\in ({\widehat{c}}^*,c_{1}^{*})~\hbox {or}~(c_{2}^{*},+\infty ). \end{aligned}$$

Taking the derivative of \(G_{2}(u)\), we obtain,

$$\begin{aligned} \begin{aligned} G'_{2}(u)&=\left( \frac{-\alpha }{M-u}+\frac{\beta }{u-A}+\frac{\gamma }{(u-A)^{2}}\right) G_{2}(u)\\&=\frac{(\beta M-1)}{(M-u)(u-A)^{2}}(u-u^{*})G_{2}(u)\\&=\frac{-J_{2}(c)}{(M-u)(u-A)^{2}}(u-u^{*})G_{2}(u), \end{aligned} \end{aligned}$$

for \(u\in (0,M)\) and \(c=c_{1}^{*}\), or \(c=c_{2}^{*}.\)

Also, from (66)

$$\begin{aligned} \begin{aligned} G'(u)&=\frac{-J_{2}(c)}{(M-u)[(u-A)^{2}+B]}(u-u^{*})G(u), \end{aligned} \end{aligned}$$

for \(u\in (0,M)\), and \(c\in (c_{1}^{*}, c_{2}^{*})\).

Moreover, since \(c^{*}<\widehat{c^*}<c_{1}^{*}\) for \(s_{h}\in (s^*_{h},\frac{4s^*_{h}}{3})\), we have \(u^{*}<0\), and \(G_{1}(u),\) \(G_{2}(u)\) and G(u) are all strictly decreasing for \(u\in (0,M)\) and \(c>\widehat{c^*}.\) Based on these analyses, it is easy to see that \(G(u)<G({\bar{h}}(u))\) for \(u\in (0,M)\) and \(c>\widehat{c^*}.\)

Direct calculation yields

$$\begin{aligned} \begin{aligned} \frac{h(u)}{u}=\frac{M-h(u)}{M-u}\cdot \left( \frac{G(u)}{G({\bar{h}}(u))}\right) ^{\frac{1}{\alpha }} <\frac{M-h(u)}{M-u}, \end{aligned} \end{aligned}$$
(77)

for \(u\in (0,M)\), which implies that \(h(u)<u\) for \(u\in (0,M)\) and \(c\in (c_{1}^{*},c^{*})\).

For the case \(s_{h}={4s^*_{h}}/{3},\) we have \(c^{*}=\widehat{c^*}=c_{1}^{*}.\) Hence, the proof can be done in a similar fashion as the proof for case \(s_{h}\in (s^*_{h},\frac{4s^*_{h}}{3})\), for \(c\in (c_{2}^{*},+\infty )\) and \(c\in (c_{1}^{*},c_{2}^{*})\) .

If \(s_{h}<s^*_{h}\), we have \(B<0\), and can prove our result by a similar argument as the proof for the case \(s_{h}\in (s^*_{h},\frac{4s^*_{h}}{3})\), for \(c\in (\widehat{c^*},c_{1}^{*})\) or \((c_{2}^{*},+\infty )\) . We omit the details here. The proof of Lemma 5.3 is complete. \(\square \)

Lemma 5.4

Assume \(T<T^{*}\). Then, \(h(u)<u\) for all \(u>0\), if one of the following conditions is satisfied.

  1. (a)

    \(\frac{4s^*_{h}}{3}<s_{h}\le 1\) and \(c\ge c^{*}\);

  2. (b)

    \(s_{h}\le \frac{4s^*_{h}}{3}\) and \(c>\widehat{c^*}.\)

Proof

We only prove (a). The proof for (b) is similar and will be omitted.

It follows from (28) that \(\lim \limits _{u\rightarrow 0}\frac{h(u)}{u}<1\) for \(T<T^{*}\). Hence, there is sufficiently small \(\delta >0\) such that

$$\begin{aligned} \begin{aligned} h(u)<u, \text {for}~u\in (0,\delta ). \end{aligned} \end{aligned}$$
(78)

Since \(c\ge c^{*}\), solution \(w(t)=w(t;0,M)\) is strictly decreasing for \(t\in (0,{\bar{T}}]\). Hence \({\bar{h}}(M)<M\) which implies \(h(M)<M\). Assume that there exists \({\tilde{u}}\in (\delta ,M)\) such that \(h({\tilde{u}})\ge {\tilde{u}}.\) Then, there must be \(u^{'}\in (0,{\tilde{u}}]\) such that

$$\begin{aligned} \begin{aligned} h(u^{'})=u^{'}, h'(u^{'})\ge 1. \end{aligned} \end{aligned}$$
(79)

Thus, from (42), (52) and (58), we see

$$\begin{aligned} \begin{aligned} l_{1}u^{'2}+l_{2}u^{'}+l_{3}\ge 0, ~\text {for}~ c\in [c^{*},c_{2}^{*}),\\ {\widetilde{l}}_{1}u^{'2}+{\widetilde{l}}_{2}u^{'}+{\widetilde{l}}_{3}\ge 0, ~\text {for}~ c=c_{2}^{*},\\ q_{1}u^{'2}+q_{2}u^{'}+q_{3}\ge 0 ~\text {for}~ c>c_{2}^{*}. \end{aligned} \end{aligned}$$
(80)

For \(c\in [c^{*},c_{2}^{*})\), further calculation gives

$$\begin{aligned} \begin{array}{l}[(A^{2}+B)+2cM]u^{'2}+[2c(A^{2}+B)-4cMA-2cM^{2}-2M(A^{2}+B)]u^{'}+l_{3}\\ \ge [m(A^{2}+B)-2mMA+mM^{2}]u^{'2}+m[2c(A^{2}+B)-4cMA+2cM^{2}]u^{'}>0. \end{array} \end{aligned}$$

Set

$$\begin{aligned} {\tilde{G}}_{1}(u)= & {} [(A^{2}+B)+2cM]u^{2}+[2c(A^{2}+B)-4cMA-2cM^{2}\\&-2M(A^{2}+B)]u+l_{3}. \end{aligned}$$

Hence, \({\tilde{G}}_{1}(u^{'})>0.\)

The quadratic polynomial \({\tilde{G}}_{1}(u)\) is concave up. Since \({\tilde{G}}_{1}(0)=l_{3}\le 0\) for \(c\ge c^{*},\) \({\tilde{G}}_{1}(M)=0\) and \({\tilde{G}}_{1}(u)<0\) for \(u\in (0,M).\) Thus, it contradicts the assumption of \({\tilde{G}}_{1}(u^{'})>0.\)

For the case \(c=c_{2}^{*}\), we can use a proof similar to the above. Thus, we omit it.

If \( c>c_{2}^{*}\), we obtain

$$\begin{aligned}&(E^{-}_{1}(c)E^{-}_{2}(c)+2cM)u^{'2}+[2cE^{-}_{1}(c)E^{-}_{2}(c)-2cM(E^{-}_{1}(c) +E^{-}_{2}(c))]u^{'}+q_{3}\nonumber \\&\quad \ge [M^{2}m-mM(E^{-}_{1}(c)+E^{-}_{2}(c)) +mE^{-}_{1}(c)E^{-}_{2}(c)]u^{'2}\nonumber \\&\qquad +[2cM^{2}(m+1)-2cmM(E^{-}_{1}(c)+E^{-}_{2}(c))\nonumber \\&\qquad +2cmE^{-}_{1}(c)E^{-}_{2}(c) +2ME^{-}_{1}(c)E^{-}_{2}(c)]u^{'}\nonumber \\&\quad >0. \end{aligned}$$
(81)

Set

$$\begin{aligned} {\tilde{G}}_{2}(u)= & {} (E^{-}_{1}(c)E^{-}_{2}(c)+2cM)u^{2}+[2cE^{-}_{1}(c)E^{-}_{2}(c)\nonumber \\&-2cM(E^{-}_{1}(c)+E^{-}_{2}(c))]u+q_{3}. \end{aligned}$$

Hence, \({\tilde{G}}_{2}(u^{'})>0\).

Clearly, quadratic polynomial \({\tilde{G}}_{2}(u)\) is concave up. Since \({\tilde{G}}_{2}(0)=q_{3}=l_{3}<0\) for \(c>c_{2}^{*},\) \({\tilde{G}}_{2}(M)=0\) and \({\tilde{G}}_{2}(u)<0\) for \(u\in (0,M).\) Thus, it contradicts the assumption of \({\tilde{G}}_{2}(u^{'})>0.\) \(\square \)

Proof of Theorem 3.1

(a) Assume that \(E_{0}\) is locally asymptotically stable. Since \(h_{n}(u_{0})=w(nT;0,u_{0}),\) \(n=0,1,2\cdots \), there exists \(\delta (\varepsilon )>0\) small enough such that if \(|u_{0}|<\delta (\varepsilon ),\) then \(\lim _{n\rightarrow \infty }h_{n}(u_{0})=0.\)

Now, we prove \(T<T^{*}\) by contradiction. Suppose \(T\ge T^{*}.\) From (28), we see, if \(T>T^{*}\), then there is \(\delta _{1}>0\) small enough such that \(h(u_{0})>u_{0},\) for \(u_{0}\in (0,\delta _{1}).\) If \(T=T^{*}\), then from the proof of Lemma 5.3, we see that there is \(\delta _{2}>0\) small enough such that \(h(u_{0})>u_{0},\) for \(u_{0}\in (0,\delta _{2})\), which implies that \(h_{n}(u)\) is strictly increasing and \(\lim \limits _{n\rightarrow \infty }h_{n}(u_{0})\ne 0\) for \(u\in (0,{\hat{\delta }}),\) where \({\hat{\delta }}=\min \{\delta _{1},\delta _{2}\},\) a contradiction. Hence \(T<T^{*}.\)

If \(T<T^{*}\), then it follows from (28) that \(h^{'}(0)=e^{M\xi (T-T^{*})}<1\) and furthermore, there is sufficiently small \(\delta >0\) such that

$$\begin{aligned} \begin{aligned} h(u_{0})<u_{0}, \text {for}~u_{0}\in (0,\delta ). \end{aligned} \end{aligned}$$
(82)

Hence, the spectral radius of h(0) is less than 1, which implies that the origin \(E_{0}\) of Eq. (2) is locally stable.

We next prove that every solution of (2) goes to zero. That is, for above \(\delta ,\) if \(0<u_{0}<\delta ,\) then

$$\begin{aligned} \lim _{t\rightarrow \infty }w(t;0,u_{0})=0~\text {or}~\lim _{n\rightarrow \infty }h_{n}(u_{0})=0. \end{aligned}$$

It follows from (82) and Lemma 5.1 that \(\{h_{n}(u_{0})\}^{\infty }_{0}\) is strictly decreasing, and thus there exists \(l\ge 0\) such that \(\lim _{n\rightarrow \infty }h_{n}(u_{0})=l.\) If \(l\ne 0,\) then we must have

$$\begin{aligned} \begin{aligned} h(l)=l, \text {for}~l\in (0,\delta ). \end{aligned} \end{aligned}$$
(83)

This is contradictory to (82).

(b) We assume that Eq. (2) has a unique globally asymptotically stable T-periodic solution. Then, \(T\ge T^{*}\) can be justified from the above conclusion. We now show that if \(T\ge T^{*}\), then Eq. (2) has a unique globally asymptotically stable T-periodic solution.

Based on Lemma 5.2 and 5.3, we denote the unique T-periodic solution of Eq. (2) by

$$\begin{aligned} {\bar{w}}(t):=w(t;0,{\bar{u}}),~\text {for} ~{\bar{u}}\in (0,M). \end{aligned}$$

We then show that \({\bar{w}}(t)\) is stable.

For any \(\varepsilon >0\), choosing \(\delta =\varepsilon \), we claim that \(|u-{\bar{u}}|<\delta \) implies

$$\begin{aligned} |w(t)-{\bar{w}}(t)|<\varepsilon ,~\text {for}~t\ge 0. \end{aligned}$$
(84)

We show (84) by contradiction.

Suppose that (84) is not true. Then, there exists \({\bar{t}}>0\) such that

$$\begin{aligned} |w(t)-{\bar{w}}(t)|<\varepsilon , \end{aligned}$$

for \(t\in [0,{\bar{t}})\), and \(|w({\bar{t}})-{\bar{w}}({\bar{t}})|=\varepsilon \). Without loss of generality, we assume that

$$\begin{aligned} w({\bar{t}})-{\bar{w}}({\bar{t}})=\varepsilon . \end{aligned}$$

Then, there must be a nonnegative integer k such that either \({\bar{t}}=kT\), or \({\bar{t}}=kT+{\bar{T}}\), or \({\bar{t}}\in (kT,kT+{\bar{T}})\cup (kT+{\bar{T}},(k+1)T)\).

If \({\bar{t}}=kT,\) then we must have \(k\ge 1\) and

$$\begin{aligned} w(t)-{\bar{w}}(t)<\varepsilon ,~\text {for}~t\in [0,kT),~~ w(kT)-{\bar{w}}(kT)=\varepsilon , \end{aligned}$$

which implies that

$$\begin{aligned} w((k-1)T)<{\bar{w}}((k-1)T)+\varepsilon ={\bar{w}}(kT)+\varepsilon =w(kT). \end{aligned}$$

Hence, the series \(\{w(kT)\}\) is strictly increasing, which implies that Eq. (2) has another T-periodic solution. This contradicts the uniqueness of the T-periodic solution of Eq. (2).

If \({\bar{t}}=kT+{\bar{T}},\) then we see

$$\begin{aligned} w(t)-{\bar{w}}(t)<\varepsilon , \ \text {for}~t\in [0,kT+{\bar{T}}),\ \text {and}\ w(kT+{\bar{T}})-{\bar{w}}(kT+{\bar{T}})=\varepsilon . \end{aligned}$$

Using (25), we obtain

$$\begin{aligned} \begin{aligned} w(kT)=&\dfrac{Mw((k-1)T+{\bar{T}})}{mM-(1-m)w((k-1)T+{\bar{T}})}\\ <&\dfrac{M({\bar{w}}((k-1)T+{\bar{T}})+\varepsilon )}{mM-(1-m)({\bar{w}}((k-1)T+{\bar{T}})+\varepsilon )}\\ =&\dfrac{M({\bar{w}}(kT+{\bar{T}})+\varepsilon )}{mM-(1-m)({\bar{w}}(kT+{\bar{T}})+\varepsilon )}\\ =&\dfrac{Mw(kT+{\bar{T}})}{mM-(1-m)w(kT+{\bar{T}})}\\ =&w((k+1)T). \end{aligned} \end{aligned}$$
(85)

Hence, a contradiction again.

If \({\bar{t}}\in (kT,kT+{\bar{T}})\cup (kT+{\bar{T}},(k+1)T)\), then \(w'({\bar{t}})\ge {\bar{w}}'({\bar{t}})\). We just need to prove that \({\bar{t}}\in (kT+{\bar{T}},(k+1)T)\) is not true, since the proof of the case \({\bar{t}}\in (kT,kT+{\bar{T}})\) is similar.

Integrating Eq. (5) over \(({\bar{t}},(k+1)T)\), yields,

$$\begin{aligned} \begin{array}{ll} \dfrac{w((k+1)T)}{M-w((k+1)T)}&{}=\left( \frac{w({\bar{t}})}{M-w({\bar{t}})}\right) e^{M\xi ((k+1)T-{\bar{t}})}\\ &{}=\left( \dfrac{{\bar{w}}({\bar{t}})+\varepsilon }{M-({\bar{w}}({\bar{t}})+\varepsilon )}\right) e^{M\xi ((k+1)T-{\bar{t}})}\\ &{}=\left( \dfrac{{\bar{w}}({\bar{t}}-T)+\varepsilon }{M-({\bar{w}}({\bar{t}}-T)+\varepsilon )}\right) e^{M\xi ((k+1)T-{\bar{t}})}. \end{array} \end{aligned}$$

Similarly, integrating Eq. (5) over \(({\bar{t}}-T,kT)\), we obtain

$$\begin{aligned} \left( \frac{w({\bar{t}}-T)}{M-w({\bar{t}}-T)}\right) e^{M\xi ((k+1)T-{\bar{t}})}\\ =\frac{w(kT)}{M-w(kT)}. \end{aligned}$$

Since \(w({\bar{t}}-T)<{\bar{w}}({\bar{t}}-T)+\varepsilon ,\) then

$$\begin{aligned} \left( \dfrac{w({\bar{t}}-T)}{M-w({\bar{t}}-T)}\right) <\left( \dfrac{{\bar{w}}({\bar{t}}-T)+\varepsilon }{M-({\bar{w}}({\bar{t}}-T)+\varepsilon )}\right) , \end{aligned}$$

which implies that

$$\begin{aligned} \frac{w((k+1)T)}{M-w((k+1)T)}>\frac{w(kT)}{M-w(kT)}. \end{aligned}$$

Thus, we have \(w(kT)<w((k+1)T)\), a contradiction, and hence, \({\bar{w}}(t)\) is stable.

Finally, in order to prove that the periodic solution is globally asymptotically stable, we only need to prove its global attractivity, that is,

$$\begin{aligned} \lim _{t\rightarrow \infty }w(t)-{\bar{w}}(t)=\lim _{t\rightarrow \infty }w(t;0,u)-w(t;0,{\bar{u}})=0, \end{aligned}$$
(86)

for any \(u>0\).

It follows from (iv) of Lemma 5.1 that

$$\begin{aligned} \lim _{t\rightarrow \infty }h_{n}(u)=l, \hbox {where~}l~\hbox {satisfies~}h(l)=l. \end{aligned}$$
(87)

Applying the uniqueness of the T-periodic solution, we know \(l=0,~\hbox {or}~{\bar{u}}.\) If \(l=0,\) from (a), we see \(T<T^{*}.\) It contradicts the assumption of \(T\ge T^{*}.\) Thus, the proof is finished.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Yu, J. & Li, J. A Mosquito Population Suppression Model by Releasing Wolbachia-Infected Males. Bull Math Biol 84, 121 (2022). https://doi.org/10.1007/s11538-022-01073-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-022-01073-9

Keywords

Mathematics Subject Classification

Navigation