Skip to main content

Advertisement

Log in

Effects of Sterile Males and Fertility of Infected Mosquitoes on Mosquito-Borne Disease Dynamics

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

By studying an infection-age structured model, we consider the effects of releasing sterile males and the fertility of infected mosquitoes on the mosquito-borne diseases transmission including the extinction of mosquitoes, the elimination and persistence of diseases. Firstly, equivalent integral equations are established to prove the well-posedness of solutions. Then, the main results of disease dynamics are given. By taking chikungunya as a numerical simulation example, an optimal releasing threshold is given according to our presupposed control standard. When the fertility disturbance of infected mosquitoes is small, the high releasing amount plays a main role on the control of the disease; however, when the fertility disturbance is large, the initial distributions and the fertility of infected mosquitoes are the key factors to control the disease. Mathematically, the fertility of infected mosquitoes makes the system have complex dynamics with multiple positive equilibria and bistability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Criteria for control and elimination of malaria, Ministry of Health of the People’s Republic of China Standardization Administration of China, GB 26345-2010, http://www.nhc.gov.cn/wjw/s9499/201106/de37ee7388634b458b3eb7d923ce01ba.shtml

  • Technical guide for chikungunya fever Prevention and Control. https://wenku.baidu.com/view/1221d33a6394dd88d0d233d4b14e852459fb3992.html

  • Alphey L (2014) Genetic control of mosquitoes. Annu Rev Entomol 59:205–224

    Article  Google Scholar 

  • Anguelov R, Dumont Y, Lubuma J (2012) Mathematical modeling of sterile insect technology for control of anopheles mosquito. Comput Math Appl 64:374–389

    Article  MathSciNet  MATH  Google Scholar 

  • Atkinson M, Su Z, Alphey N, Alphey L, Wein L (2007) Analyzing the control of mosquito-borne diseases by a dominant lethal genetic system. Proc Natl Acad Sci USA 104:9540–9545

    Article  Google Scholar 

  • Boete C, Agusto F, Reeves R (2014) Impact of mating behaviour on the success of malaria control through a single inundative release of transgenic mosquitoes. J Theoret Biol 347:33–43

    Article  MathSciNet  MATH  Google Scholar 

  • Bowman C, Gumel A, van den Driessche P, Wu J, Zhu H (2005) A mathematical model for assessing control strategies against West Nile virus. Bull Math Biol 67:1107–1133

    Article  MathSciNet  MATH  Google Scholar 

  • Buckner E, Alto B, Lounibos L (2013) Vertical transmission of key west dengue-1 virus by aedes aegypti and aedes albopictus (diptera: Culicidae) mosquitoes from florida. J Med Entomol 50:1291–1297

    Article  Google Scholar 

  • Cai L, Ai S, Li J (2014) Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes. SIAM J Appl Math 74:1786–1809

    Article  MathSciNet  MATH  Google Scholar 

  • Charlwood J, Smith T, Billingsley P, Takken W, Lyimo E, Meuwissen J (1997) Survival and infection probabilities of anthropophagic anophelines from an area of high prevalence of plasmodium falciparum in humans. Bull Entomol Res 87:453–455

    Article  Google Scholar 

  • Chen Y, Zhou S, Yang J (2016) Global analysis of an SIR epidemic model with infection age and saturated incidence. Nonlinear Anal-Real World Appl 30:16–31

    Article  MathSciNet  MATH  Google Scholar 

  • Chitnis N, Hyman J, Cushing J (2008) Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull Math Biol 70:1272–1296

    Article  MathSciNet  MATH  Google Scholar 

  • Dufourd C, Dumont Y (2013) Impact of environmental factors on mosquito dispersal in the prospect of sterile insect technique control. Comput Math Appl 66:1695–1715

    Article  MathSciNet  MATH  Google Scholar 

  • Farkas J, Hinow P (2010) Structured and unstructured continuous models for Wolbachia infections. Bull Math Biol 72:2067–2088

    Article  MathSciNet  MATH  Google Scholar 

  • Ferguson H, Rivero A, Read A (2003) The influence of malaria parasite genetic diversity and anaemia on mosquito feeding and fecundity. Parasitology 127:9–19

    Article  Google Scholar 

  • Fister K, McCarthy M (2013) Optimal control of insects through sterile insect release and habitat modification. Math Biosci 244:201–212

    Article  MathSciNet  MATH  Google Scholar 

  • Fu G, Lees R, Nimmo D, Aw D, Jin L, Gray P, Berendonk T, White-Cooper H, Scaife S, Kim Phuc H, Marinotti O, Jasinskiene N, James A, Alphey L (2010) Female-specific flightless phenotype for mosquito control. Proc Natl Acad Sci USA 107:4550–4554

    Article  Google Scholar 

  • Gubler D (1998) Resurgent vector-borne diseases as a global health problem. Emerg Infect Dis 4:442–450

    Article  Google Scholar 

  • Harrus S, Baneth G (2005) Drivers for the emergence and re-emergence of vector-borne protozoal and bacterial diseases. Int J Parasit 35:1309–1318

    Article  Google Scholar 

  • Hu L, Yang C, Hui Y, Yu J (2021) Mosquito control based on pesticides and endosymbiotic bacterium wolbachia. Bull Math Biol 83:1–24

    Article  MathSciNet  MATH  Google Scholar 

  • Huang M, Luo J, Hu L, Zheng B, Yu J (2017) Assessing the efficiency of Wolbachia driven Aedes mosquito suppression by delay differential equations. J Theor Biol 440:1–11

    Article  MathSciNet  Google Scholar 

  • Huang J, Ruan S, Yu P, Zhang Y (2019) Bifurcation analysis of a mosquito population model with a saturated release rate of sterile mosquitoes. SIAM J Appl Dyn Syst 18:939–972

    Article  MathSciNet  MATH  Google Scholar 

  • Hughes H, Britton N (2013) Modelling the use of wolbachia to control dengue fever transmission. Bull Math Biol 75:796–818

    Article  MathSciNet  MATH  Google Scholar 

  • Killeen G, McKenzie F, Foy B, Schieffelin C, Billingsley P, Beier J (2000) A simplified model for predicting malaria entomologic inoculation rates based on entomologic and parasitologic parameters relevant to control. Am J Trop Med Hyg 62:535–544

    Article  Google Scholar 

  • Lees R, Gilles J, Hendrichs J, Vreysen M, Bourtzis K (2015) Back to the future: the sterile insect technique against mosquito disease vectors. Curr Opin Insect Sci 10:156–162

    Article  Google Scholar 

  • Lewis M, van den Driessche P (1993) Waves of extinction from sterile insect release. Math Biosci 116:221–247

    Article  MATH  Google Scholar 

  • Li J (2004) Simple mathematical models for interacting wild and transgenic mosquito populations. Math Biosci 189:39–59

    Article  MathSciNet  MATH  Google Scholar 

  • Li J, Cai L, Li Y (2017) Stage-structured wild and sterile mosquito population models and their dynamics. J Biol Dynam 11:79–101

    Article  MathSciNet  MATH  Google Scholar 

  • Liu H, Yu J, Zhu G (2006) Analysis of a vector-host malaria model with impulsive effect and infection-age. Adv Complex Syst 9:237–248

    Article  MathSciNet  MATH  Google Scholar 

  • Lou Y, Zhao X (2011) A reaction-diffusion malaria model with incubation period in the vector population. J Math Biol 62:543–568

    Article  MathSciNet  MATH  Google Scholar 

  • Manore C, Hickmann K, Xu S, Wearing H, Hyman J (2014) Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus. J Math Biol 356:174–191

    MathSciNet  MATH  Google Scholar 

  • Rock K, Wood D, Keeling M (2015) Age-and bite-structured models for vector-borne diseases. Epidemics 12:20–29

    Article  Google Scholar 

  • Sachs J, Malaney P (2002) The economic and social burden of malaria. Nature 415:680–685

    Article  Google Scholar 

  • Sutherst R (2004) Global change and human vulnerability to vector-borne diseases. Clin Microbiol Rev 17:136–173

    Article  Google Scholar 

  • Taghikhani R, Sharomi O, Gumel A (2020) Dynamics of a two-sex model for the population ecology of dengue mosquitoes in the presence of Wolbachia. Math Biosci 328:108426

    Article  MathSciNet  MATH  Google Scholar 

  • Thomas D, Donnelly C, Wood R, Alphey L (2000) Insect population control using a dominant, repressible lethal, genetic system. Science 287:2474–2476

    Article  Google Scholar 

  • Waltz E (2016) US reviews plan to infect mosquitoes with bacteria to stop disease. Nature 533:450–453

    Article  Google Scholar 

  • Werren J (1997) Biology of wolbachia. Annurev Ento 42:587–609

    Article  Google Scholar 

  • White S, Rohani P, Sait S (2010) Modelling pulsed releases for sterile insect techniques: fitness costs of sterile and transgenic males and the effects on mosquito dynamics. J Appl Ecol 47:1329–1339

    Article  Google Scholar 

  • Xi Z, Khoo C, Dobson S (2005) Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 310:326–328

    Article  Google Scholar 

  • Xue L, Cao X, Wan H (2021) Releasing wolbachia-infected mosquitos to mitigate the transmission of Zika virus. J Math Anal Appl 496:1–27

    Article  MathSciNet  MATH  Google Scholar 

  • Yu J (2018) Modeling mosquito population suppression based on delay differential equations. SIAM J Appl Math 78:3168–3187

    Article  MathSciNet  MATH  Google Scholar 

  • Yu J, Li J (2020) Global asymptotic stability in an interactive wild and sterile mosquito model. J Differ Equ 269:6193–6215

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng X, Zhang D (2019) Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 572:56–61

    Article  Google Scholar 

Download references

Acknowledgements

We are extremely grateful to the critical comments and invaluable suggestions made by anonymous honorable reviewers. We sincerely thank Professor Jinzhi Lei and Xiyin Liang for helpful discussions on mathematical modeling and numerical computation. This work is supported by the National Natural Science Foundation of China (Nos. 11871371,11871179,11971023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfei Lv.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Liu, S., Lv, Y. et al. Effects of Sterile Males and Fertility of Infected Mosquitoes on Mosquito-Borne Disease Dynamics. Bull Math Biol 84, 31 (2022). https://doi.org/10.1007/s11538-022-00991-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-022-00991-y

Keywords

Navigation