Skip to main content

Advertisement

Log in

Stochastic Modeling of In Vitro Bactericidal Potency

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We provide a Galton–Watson model for the growth of a bacterial population in the presence of antibiotics. We assume that bacterial cells either die or duplicate, and the corresponding probabilities depend on the concentration of the antibiotic. Assuming that the mean offspring number is given by \(m(c) = 2 / (1 + \alpha c^\beta )\) for some \(\alpha , \beta \), where c stands for the antibiotic concentration we obtain weakly consistent, asymptotically normal estimator both for \((\alpha , \beta )\) and for the minimal inhibitory concentration, a relevant parameter in pharmacology. We apply our method to real data, where Chlamydia trachomatis bacterium was treated by azithromycin and ciprofloxacin. For the measurements of Chlamydia growth quantitative polymerase chain reaction technique was used. The 2-parameter model fits remarkably well to the biological data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agresti A (2002) Categorical data analysis. In: Wiley series in probability and statistics, 2nd edn. Wiley, New York

  • Enciso G, Sütterlin C, Tan M, Wan F (2021) Stochastic chlamydia dynamics and optimal spread. Bull Math Biol 83(24):24

    Article  MathSciNet  Google Scholar 

  • Eszik I, Lantos I, Önder K, Somogyvári F, Burián K, Endrész V, Virok D (2016) High dynamic range detection of Chlamydia trachomatis growth by direct quantitative PCR of the infected cells. J Microbiol Methods 120:15–22

    Article  Google Scholar 

  • Haccou P, Jagers P, Vatutin VA (2007) Branching processes: variation, growth, and extinction of populations. In: Cambridge studies in adaptive dynamics, vol 5. Cambridge University Press, IIASA, Cambridge, Laxenburg

  • Kesten H, Stigum BP (1967) Limit theorems for decomposable multi-dimensional Galton–Watson processes. J Math Anal Appl 17:309–338

    Article  MathSciNet  Google Scholar 

  • Kimmel M, Axelrod DE (2015) Branching processes in biology. In: Interdisciplinary applied mathematics, vol 10, 2nd edn. Springer, New York

  • Lee JK, Enciso GA, Boassa D, Chander CN, Lou TH, Pairawan SS, Guo MC, Wan FYM, Ellisman MH, Sütterlin C, Tan M (2018) Replication-dependent size reduction precedes differentiation in Chlamydia trachomatis. Nat Commun 45(9):3884–3891

  • Liu YQ, Zhang YZ, Gao PJ (2004) Novel concentration-killing curve method for estimation of bactericidal potency of antibiotics in an in vitro dynamic model. Antimicrob Agents Chemother 48(10):3884–3891

    Article  Google Scholar 

  • Miller KE (2006) Diagnosis and treatment of Chlamydia trachomatis infection. Am Fam Physician 8(73):1411–1416

    Google Scholar 

  • Panzetta M, Valdivia R, Saka H (2018) Chlamydia persistence: a survival strategy to evade antimicrobial effects in-vitro and in-vivo. Front Microbiol 9:3101

    Article  Google Scholar 

  • Paterson I, Hoyle A, Ochoa G, Baker-Austin C, Taylor N (2016) Optimising antibiotic usage to treat bacterial infections. Sci Rep 6:37853

    Article  Google Scholar 

  • Svara F, Rankin DJ (2011) The evolution of plasmid-carried antibiotic resistance. BMC Evolut Biol 11:130

    Article  Google Scholar 

  • Vu TH, Ha-Doung N, Aubry A, Capton E, Fechter P, Plésiat P, Verbeke P, Serradji N (2019) In vitro activities of a new fluoroquinolone derivative highly active against Chlamydia trachomatis. Bioorg Chem 83:180–185

    Article  Google Scholar 

  • Wan FYM, Enciso GA (2017) Optimal proliferation and differentiation of Chlamydia trachomatis. Stud Appl Math 139(1):129–178

    Article  MathSciNet  Google Scholar 

  • Wilson DP (2004) Mathematical modelling of chlamydia. In: Proceedings of 11th computational techniques and applications conference CTAC-2003, vol 45. pp C201–C214

  • Yuan JS, Reed A, Chen F, Stewart CN (2006) Statistical analysis of real-time PCR data. BMC Bioinform 7(85):534

    Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous referees for the helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Kevei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Kevei is supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and by the EU-funded Hungarian Grant EFOP-3.6.1-16-2016-00008. Szalai’s research was partially supported by the the EU-funded Hungarian Grant EFOP-3.6.2-16-2017-00015 2020, and by the Grant NKFIH-1279-2/2020 of the Ministry for Innovation and Technology, Hungary.

Appendix

Appendix

Proof of Lemma 1

Conditioning on \(\mathbf {X}_n\)

$$\begin{aligned} \mathbf {E}\left[ \mathbf {X}_{n+1} | \mathbf {X}_n \right] = \begin{pmatrix} m X_n \\ p_0 X_n + Y_n \end{pmatrix} = \mathbf {X}_n \mathbf {M}, \end{aligned}$$

thus

$$\begin{aligned} \mathbf {E}\mathbf {X}_n = \mathbf {X}_0 \mathbf {M}^n. \end{aligned}$$

We have, by induction on n that

$$\begin{aligned} \mathbf {M}^n = \begin{pmatrix} m^n &{} p_0 (1 + \cdots + m^{n-1}) \\ 0 &{} 1 \end{pmatrix}, \end{aligned}$$

thus

$$\begin{aligned} \begin{aligned} \mathbf {E}Z_n&= m^n + p_0 ( 1 + m + \cdots + m^{n-1} ) \\&= {\left\{ \begin{array}{ll} m^n \left( 1 + \frac{p_0 }{m-1} \right) - \frac{p_0 }{m-1}, &{} \text {if } m \ne 1, \\ 1 + n p_0 , &{} \text {if } m = 1, \end{array}\right. } \end{aligned} \end{aligned}$$

as claimed. \(\square \)

Proof of Proposition 3

In what follows all the iterated limits are meant as first \(x_0 \rightarrow \infty \) and then \(N \rightarrow \infty \). By Proposition 2 and the delta method

$$\begin{aligned} \begin{aligned}&\frac{\sqrt{N} m(c_i) (2-m(c_i)) \mu _n'(m(c_i))}{2 \sigma _\varepsilon \mu _n(m(c_i)) \log 2} \left( h_i - \log \left( \frac{2}{m(c_i)} - 1 \right) \right) \\&= \frac{\sqrt{N}}{k_i} \left( h_i - \log \left( \frac{2}{m(c_i)} - 1 \right) \right) {\mathop {\longrightarrow }\limits ^{\mathcal {D}}} N(0,1), \end{aligned} \end{aligned}$$

for \(i=1,2,\ldots , K\). Recall the notation in (11). Then using the independence of \(h_i\)’s

$$\begin{aligned} \sqrt{N} \sum _{i=1}^K \left( h_i - \log \left( \frac{2}{m(c_i)} - 1 \right) \right) \left( K \ell _i - L_1 \right) {\mathop {\longrightarrow }\limits ^{\mathcal {D}}} N(0, s_n^2), \end{aligned}$$

with \(s_n^2 = \sum _{i=1}^K k_i^2 (K \ell _i - L_1)^2\). Substituting back into (10)

$$\begin{aligned} \sqrt{N} ({\widehat{\beta }} - \beta ) {\mathop {\longrightarrow }\limits ^{\mathcal {D}}} N( 0, \sigma _\beta ^2). \end{aligned}$$
(15)

Similarly

$$\begin{aligned} \sqrt{N} \left( \log {\widehat{\alpha }} - \log \alpha \right) {\mathop {\longrightarrow }\limits ^{\mathcal {D}}} N(0, z_n^2), \end{aligned}$$
(16)

with \(z_n^2 = \sum _{i=1}^K k_i^2 (L_2 - L_1 \ell _i)^2 / (KL_2 - L_1^2)^2\), which implies

$$\begin{aligned} \sqrt{N} ( {\widehat{\alpha }} - \alpha ) {\mathop {\longrightarrow }\limits ^{\mathcal {D}}} N( 0, \sigma _\alpha ^2). \end{aligned}$$

The statement for the covariance follows the same way. From (15) and (16) we obtain

$$\begin{aligned} \sqrt{N} \left( {\widehat{\vartheta }} - \vartheta \right) {\mathop {\longrightarrow }\limits ^{\mathcal {D}}} N( 0, \sigma _\vartheta ^2), \end{aligned}$$

as claimed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogdanov, A., Kevei, P., Szalai, M. et al. Stochastic Modeling of In Vitro Bactericidal Potency. Bull Math Biol 84, 6 (2022). https://doi.org/10.1007/s11538-021-00967-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-021-00967-4

Keywords

Mathematics Subject Classification

Navigation