Skip to main content

Advertisement

Log in

Dynamics of Stoichiometric Autotroph–Mixotroph–Bacteria Interactions in the Epilimnion

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Autotrophs, mixotrophs and bacteria exhibit complex interrelationships containing multiple ecological mechanisms. A mathematical model based on ecological stoichiometry is proposed to describe the interactions among them. Some dynamic analysis and numerical simulations of this model are presented. The roles of autotrophs and mixotrophs in controlling bacterioplankton are explored to examine the experiments and hypotheses of Medina–Sánchez, Villar–Argaiz and Carrillo for La Caldera Lake. Our results show that the dual control (bottom-up control and top-down control) of bacteria by mixotrophs is a key reason for the ratio of bacterial and phytoplankton biomass in La Caldera Lake to deviate from the general tendency. The numerical bifurcation diagrams suggest that the competition between phytoplankton and bacteria for nutrients can also be an important factor for the decrease of the bacterial biomass in an oligotrophic lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Boehrer B, Schultze M (2008) Stratification of lakes. Rev Geophys 46(2):1–27

  • Chang XY, Shi JP, Wang H (2021) Spatial modeling and dynamics of organic matter biodegradation in the absence or presence of bacterivorous grazing. Math Biosci 331:108501

    Article  MathSciNet  Google Scholar 

  • Chen M, Fan M, Liu R, Wang XY, Yuan X, Zhu HP (2015) The dynamics of temperature and light on the growth of phytoplankton. J Theor Biol 385(21):8–19

    Article  Google Scholar 

  • Crandall MG, Rabinowitz PH (1971) Bifurcation from simple eigenvalues. J Funct Anal 8(2):321–340

    Article  MathSciNet  Google Scholar 

  • Crane KW, Grover JP (2010) Coexistence of mixotrophs, autotrophs, and heterotrophs in planktonic microbial communities. J Theor Biol 262(3):517–527

    Article  MathSciNet  Google Scholar 

  • Edwards KF (2019) Mixotrophy in nanoflagellates across environmental gradients in the ocean. Proc Natl Acad Sci USA 116(13):6211–6220

    Article  Google Scholar 

  • Grover JP (2003) The Impact of variable stoichiometry on predator-prey interactions: a multinutrient approach. Am Nat 162(1):29–43

    Article  Google Scholar 

  • Heggerud CM, Wang H, Lewis MA (2020) Transient dynamics of a stoichiometric cyanobacteria model via multiple-scale analysis. SIAM J Appl Math 80(3):1223–1246

    Article  MathSciNet  Google Scholar 

  • Hsu SB, Lou Y (2010) Single phytoplankton species growth with light and advection in a water column. SIAM J Appl Math 70(8):2942–2974

    Article  MathSciNet  Google Scholar 

  • Huisman J, Weissing FJ (1994) Light-limited growth and competition for light in well-mixed aquatic environments: an elementary mode. Ecology 75(2):507–520

    Article  Google Scholar 

  • Jiang DH, Lam KY, Lou Y, Wang ZC (2019) Monotonicity and global dynamics of a nonlocal two-species phytoplankton model. SIAM J Appl Math 79(2):716–742

    Article  MathSciNet  Google Scholar 

  • Kong JD, Salceanu P, Wang H (2018) A stoichiometric organic matter decomposition model in a chemostat culture. J Math Biol 76(3):609–644

    Article  MathSciNet  Google Scholar 

  • Li X, Wang H, Kuang Y (2011) Global analysis of a stoichiometric producer-grazer model with holling type functional responses. J Math Biol 63(5):901–932

    Article  MathSciNet  Google Scholar 

  • Loladze I, Kuang Y, Elser JJ (2000) Stoichiometry in producer-grazer systems: linking energy flow with element cycling. Bull Math Biol 62:1137–1162

    Article  Google Scholar 

  • Loladze I, Kuang Y, Elser JJ, Fagan WF (2004) Competition and stoichiometry: coexistence of two predators on one prey. Theor Popul Biol 65(1):1–15

    Article  Google Scholar 

  • Lv DY, Fan M, Kang Y, Blanco K (2016) Modeling refuge effect of submerged macrophytes in lake system. Bull Math Biol 78(4):662–694

    Article  MathSciNet  Google Scholar 

  • Medina-Sánchez JM, Villar-Argaiz M, Carrillo P (2004) Neither with nor without you: a complex algal control on bacterioplankton in a high mountain lake. Limnol Oceanogr 49(5):1722–1733

    Article  Google Scholar 

  • Mischaikow K, Smith H, Thieme HR (1995) Asymptotically autonomous semiflows: chain recurrence and Lyapunov functions. Trans Am Math Soc 347(5):1669–1685

    Article  MathSciNet  Google Scholar 

  • Moeller HV, Neubert MG, Johnson MD (2019) Intraguild predation enables coexistence of competing phytoplankton in a well-mixed water column. Ecology 100(12):e02874

    Article  Google Scholar 

  • Nie H, Hsu SB, Wang FB (2019) Steady-state solutions of a reaction-diffusion system arising from intraguild predation and internal storage. J Differ Equ 266(12):8459–8491

    Article  MathSciNet  Google Scholar 

  • Nie H, Hsu SB, Wang FB (2020) Global dynamics of a reaction-diffusion system with intraguild predation and internal storage. Discrete Contin Dyn Syst Ser B 25(3):877–901

    MathSciNet  MATH  Google Scholar 

  • Peace A, Wang H (2019) Compensatory foraging in stoichiometric producer-grazer models. Bull Math Biol 81:4932–4950

    Article  MathSciNet  Google Scholar 

  • Peace A (2015) Effects of light, nutrients, and food chain length on trophic efficienciesin simple stoichiometric aquatic food chain models. Ecol Model 312:125–135

    Article  Google Scholar 

  • Peng R, Zhao XQ (2016) A nonlocal and periodic reaction-diffusion-advection model of a single phytoplankton species. J Math Biol 72(3):755–791

    Article  MathSciNet  Google Scholar 

  • Rong X, Sun Y, Fan M, Wang H (2020) Stoichiometric modeling of aboveground-belowground interaction of herbaceous plant and two herbivores. Bull Math Biol 82:107

    Article  MathSciNet  Google Scholar 

  • Shi JP, Wang XF (2009) On global bifurcation for quasilinear elliptic systems on bounded domains. J Differ Equ 246(7):2788–2812

    Article  MathSciNet  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton

    Google Scholar 

  • Stickney HL, Hood RR, Stoecker DK (2000) The impact of mixotrophy on planktonic marine ecosystems. Ecol Model 125(2–3):203–230

    Article  Google Scholar 

  • Wang H, Smith HL, Kuang Y, Elser JJ (2007) Dynamics of stoichiometric bacteria-algae interactions in the epilimnion. SIAM J Appl Math 68(2):503–522

    Article  MathSciNet  Google Scholar 

  • Wang H, Kuang Y, Loladze I (2008) Dynamics of a mechanistically derived stoichiometric producer-grazer model. J Biol Dyn 2(3):286–296

    Article  MathSciNet  Google Scholar 

  • Wüest A, Lorke A (2003) Small-scale hydrodynamics in lakes. Annu Rev Fluid Mech 35(1):373–412

    Article  Google Scholar 

  • Wilken S, Verspagen JMH, Naus-Wiezer S, Van Donk E, Huisman J (2014) Comparison of predator-prey interactions with and without intraguild predation by manipulation of the nitrogen source. Oikos 123(4):423–432

    Article  Google Scholar 

  • Wilken S, Verspagen JMH, Naus-Wiezer S, Van Donk E, Huisman J (2014) Biological control of toxic cyanobacteria by mixotrophic predators: an experimental test of intraguild predation theory. Ecol Appl 24(5):1235–1249

    Article  Google Scholar 

  • Yoshiyama K, Nakajima H (2002) Catastrophic transition in vertical distributions of phytoplankton: alternative equilibria in a water column. J Theor Biol 216(4):397–408

    Article  MathSciNet  Google Scholar 

  • Zhang JM, Kong JD, Shi JP, Wang H (2021) Phytoplankton competition for nutrients and light in a stratified lake: a mathematical model connecting epilimnion and hypolimnion. J Nonlinear Sci 31:35

    Article  MathSciNet  Google Scholar 

  • Zhang JM, Shi JP, Chang XY (2021) A model of algal growth depending on nutrients and inorganic carbon in a poorly mixed water column. J Math Biol 83:15

    Article  MathSciNet  Google Scholar 

  • Zhang JM, Shi JP, Chang XY (2018) A mathematical model of algae growth in a pelagic-benthic coupled shallow aquatic ecosystem. J Math Biol 76(5):1159–1193

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the manuscript and typed, read and approved the final manuscript.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yan and Zhang are supported by NSFC-11971088 and NSFHLJ-LH2021A003; Wang is supported by NSERC Discovery Grant RGPIN-2020-03911 and NSERC Accelerator Grant RGPAS-2020-00090.

Appendix

Appendix

Proof of Theorem 1

Let \(\Phi =AQ_{a}+MQ_{m}+qB+N\). It follows from (1) that

$$\begin{aligned} \frac{d\Phi }{dt}=&\frac{D}{L}(N_{b}-(AQ_{a}+MQ_{m}+qB+N))\\&-\left( d_{a}+\frac{v_a}{L}\right) AQ_{a}-\left( d_{m}+\frac{v_m}{L}\right) AQ_{m}-d_{b}qB\\ \le&\frac{D}{L}(N_{b}-\Phi ), \end{aligned}$$

and then \(\limsup \limits _{t\rightarrow \infty }\Phi (t)\le N_{b}\). Note that \(Q_{\min ,a}\le Q_a(t)\le Q_{\max ,a},Q_{\min ,m}\le Q_m(t)\le Q_{\max ,m}\) for all \(t\ge 0\). Then

$$\begin{aligned} \limsup \limits _{t\rightarrow \infty }A(t)\le \frac{N_{b}}{Q_{\min ,a}},~~\limsup \limits _{t\rightarrow \infty }M(t)\le \frac{N_{b}}{Q_{\min ,m}}. \end{aligned}$$

From the last equation of (1), we have

$$\begin{aligned} \frac{dC}{dt}\le & {} \mu _c(A,Q_a,M,Q_m)-\frac{D}{L}C\le r_{a}A+r_{m}M-\frac{D}{L}C\\\le & {} \left( \frac{r_{a}}{Q_{\min ,a}}+\frac{r_{m}}{Q_{\min ,m}}\right) N_{b}-\frac{D}{L}C \end{aligned}$$

for sufficiently large t and

$$\begin{aligned} \limsup \limits _{t\rightarrow \infty }C(t)\le \frac{LN_{b}}{D}\left( \frac{r_{a}}{Q_{\min ,a}}+ \frac{r_{m}}{Q_{\min ,m}}\right) . \end{aligned}$$

This means that the set \(\Delta \) is a globally attracting region and system (1) is dissipative. \(\square \)

Proof of Theorem 2

By using local bifurcation theory in (Crandall and Rabinowitz 1971), we first show that \(E_3\) bifurcates from \(E_2\) at \(d_b=d_{b1}\). Define a mapping \(F:{\mathbb {R}}^+\times {\mathbb {R}}^5\rightarrow {\mathbb {R}}^5\) by

$$\begin{aligned} F(d_b,A,Q_a,N,B,C) =\begin{pmatrix} \mu _a(A,Q_a)A-d_aA-\frac{v_a+D}{L}A\\ \rho _a(Q_a)g_a(N)-\mu _a(A,Q_a)Q_a\\ \frac{D}{L}(N_b-N)-\rho _a(Q_a)g_a(N)A-qr_bg_b(N,C)B\\ r_bg_b(N,C)B-d_bB-\frac{D}{L}B\\ \mu _c(A,Q_a)-\frac{1}{\gamma }r_bg_b(N,C)B-\frac{D}{L}C \end{pmatrix}. \end{aligned}$$

It is easy to see that \(F(d_{b},A_2,Q_{a_2},N_2,0,C_2)=0\). Let

$$\begin{aligned} P:=F_{(A,Q_a,N,B,C)}(d_{b1},A_2,Q_{a2},N_2,0,C_2). \end{aligned}$$

For any \((\xi _1,\xi _2,\xi _3,\xi _4,\xi _5)\in {\mathbb {R}}^5\), we have

$$\begin{aligned} P[\xi _1,\xi _2,\xi _3,\xi _4,\xi _5]= \begin{pmatrix} p_1(\xi _1,\xi _2)\\ p_2(\xi _1,\xi _2,\xi _3)\\ p_3(\xi _1,\xi _2,\xi _3,\xi _4)\\ 0\\ p_4(\xi _1,\xi _2,\xi _4,\xi _5) \end{pmatrix}, \end{aligned}$$

where

$$\begin{aligned} \begin{aligned}p_1(\xi _1,\xi _2)=&\frac{\partial \mu _{a}}{\partial A}(A_2,Q_{a2})A_2\xi _1+\frac{\partial \mu _{a}}{\partial Q_a}(A_2,Q_{a2})A_2\xi _2,\\p_2(\xi _1,\xi _2,\xi _3)=&-\!\frac{\partial \mu _{a}}{\partial A}(A_2,Q_{a2}) Q_{a2}\xi _1\!\!+\!\!\left( \frac{\partial \rho _{a}}{\partial Q_{a}}(Q_{a2})g_a(N_2)\!\!-\!r_a\bar{I}_a(A_2,0)\right) \xi _2\\ {}&+\!\rho _a(Q_{a2})\frac{\partial g_a}{\partial N}(N_2)\xi _3,\\p_3(\xi _1,\xi _2,\xi _3,\xi _4)=&-\rho _{a}(Q_{a2})g_{a}(N_2)\xi _1-\frac{\partial \rho _{a}}{\partial Q_{a}}(Q_{a2})g_{a}(N_{2})A_2\xi _2\\ {}&-\left( \frac{D}{L}+\rho _{a}(Q_{a2})\frac{\partial g_a}{\partial N}(N_2)A_2\right) \xi _3 -qr_bg_b(N_2,C_2)\xi _4,\\p_4(\xi _1,\xi _2,\xi _4,\xi _5)=&\frac{\partial \mu _{c}}{\partial A}(A_2,Q_{a2})\xi _1{+}\frac{\partial \mu _{c}}{\partial Q_{a}}(A_2,Q_{a2})\xi _2{-}\frac{1}{\gamma }r_{b}g_{b}(N_2,C_2)\xi _4{-}\frac{D}{L}\xi _5.\end{aligned} \end{aligned}$$

If \((\xi _1,\xi _2,\xi _3,\xi _4,\xi _5) \in \ker P\), then

$$\begin{aligned} \begin{aligned}&p_1(\xi _1,\xi _2,\xi _4)=0,~ p_2(\xi _1,\xi _2,\xi _3,\xi _4)=0,~ p_3(\xi _1,\xi _2,\xi _3,\xi _4)=0,\\&p_4(\xi _1,\xi _2,\xi _4,\xi _5)=0. \end{aligned} \end{aligned}$$
(A.1)

Let \(\xi _4=1\), then it is clear that (A.1) has a unique solution \((\hat{\xi }_{1},\hat{\xi }_{2},\hat{\xi }_{3},1,\hat{\xi }_{5})\). Then \(\dim \ker P=1\) and \(\ker P={{\,\mathrm{span}\,}}\{\hat{\xi }_{1},\hat{\xi }_{2},\hat{\xi }_{3},1,\hat{\xi }_{5}\}\). It is also noted that \({{\,\mathrm{codim}\,}}{{\,\mathrm{range}\,}}P=1\) as

$$\begin{aligned} {{\,\mathrm{range}\,}}P=&\left\{ (\sigma _1,\sigma _2,\sigma _3,\sigma _4,\sigma _5)\in {\mathbb {R}}^5:\sigma _4=0\right\} , \end{aligned}$$

and

$$\begin{aligned}&P_{d_b(A,Q_a,N,B,C)}(d_{b1},A_2,Q_{a_2},N_2,0,C_2)(\hat{\xi }_{1}, \hat{\xi }_{2},\hat{\xi }_{3},1,\hat{\xi }_{5})\\&\quad =(0,0,0,-1,0)\notin {{\,\mathrm{range}\,}}P. \end{aligned}$$

From Theorem 1.7 in (Crandall and Rabinowitz 1971), there exists a \(\delta _1>0\) such that all positive coexistence steady states of (3) near \((d_{b1},A_2,Q_{a_2},N_2,0,C_2)\) lie on a smooth curve

$$\begin{aligned} \Gamma _{ba}=\{(d_b(s),A_{3}(s),Q_{a3}(s),N_{3}(s),B_{3}(s),C_{3}(s)):0<s<\delta _1\} \end{aligned}$$

with the form

$$\begin{aligned} {\left\{ \begin{array}{ll} A_{3}(s)=A_{2}+s\hat{\xi }_1+o(s), Q_{a3}(s)=Q_{a2}+s\hat{\xi }_2+o(s), N_{3}(s)=N_2+s\hat{\xi }_3+o(s),\\ B_{3}(s)=s+o(s), C_{3}(s)=C_2+s\hat{\xi }_5+o(s). \end{array}\right. } \end{aligned}$$

Then part (ii) holds.

We next establish global bifurcation of positive coexistence steady states of (3). Let \(\Upsilon \) be the set of all positive coexistence steady states of (3). It can be seen that the conditions of Theorem 3.3 and Remark 3.4 in (Shi and Wang 2009) hold. This shows that there exists a connected component \(\Upsilon ^+\) of \(\Upsilon \) such that it includes \(\Gamma _{ba}\), and its closure contains the bifurcation point \((d_{b1},A_2,Q_{a2},N_2,0,C_2)\). Moreover, \(\Upsilon ^+\) has one of the following three cases:

  1. (1)

    it is not compact in \({\mathbb {R}}^6\);

  2. (2)

    it includes another bifurcation point \((\bar{d}_{b},A_2,Q_{a2},N_2,0,C_2)\) with \(\bar{d}_{b}\ne d_{b1}\);

  3. (3)

    it includes a point \((d_b,A_2+\hat{A},Q_{a2}+\hat{Q}_a,N_2+\hat{N},\hat{B},C_2+\hat{C})\) with \(0\ne (\hat{A},\hat{Q}_a,\hat{N},\hat{B},\hat{C})\in Z\), where Z is a closed complement of \(\ker P={{\,\mathrm{span}\,}}(\hat{\xi }_{1},\hat{\xi }_{2},\hat{\xi }_{3},1,\hat{\xi }_{5})\) in \({\mathbb {R}}^5\).

If the case (3) occurs, then \(\hat{B}=0\), which is a contradiction to \(\hat{B}>0\) since it is a positive steady state. Assume that the case (2) holds and \(\bar{d}_{b}\) is another bifurcation value from \(\Gamma _a\). Hence, there exists a positive coexistence steady state sequence \(\{(d_{b}^n,A^n,Q_a^n,N^n,B^n,C^n)\}\) satisfying

$$\begin{aligned} \{(d_{b}^n,A^n,Q_a^n,N^n,B^n,C^n)\}\rightarrow (\bar{d}_{b},A_2,Q_{a2},N_2,0, C_2) \end{aligned}$$

as \(n\rightarrow \infty \). From the fourth equation in (3), we have

$$\begin{aligned} r_bg_b(N^n,C^n)-d_b^n-\frac{D}{L}=0. \end{aligned}$$

Hence

$$\begin{aligned} r_bg_b(N_2,C_2)-\bar{d}_b-\frac{D}{L}=0 \end{aligned}$$

when \(n\rightarrow \infty \), which means that \(\bar{d}_b=d_{b1}\).

The above analysis shows that the case (1) must happen. Then \(\Upsilon ^+\) is not compact in \({\mathbb {R}}^6\). It follows from Theorem 1 that

$$\begin{aligned}Q_{\min ,a}\le Q_{a3}\le Q_{\max ,a},~A_3Q_{a3}+qB_3+N_3\le N_b,~C_3\le \frac{r_aLN_b}{DQ_{\min ,a}} \end{aligned}$$

for all \(d_b\in (0,d_{b1})\). This indicates that the projection of \(\Upsilon ^+\) onto \(d_b\)-axis contains \((0,d_{b1})\). This proves part (i). \(\square \)

Proof of Theorem 3

  1. (i)

    It is obvious that \(E_4\) always exists. The Jacobian matrix at \(E_4\) is

    $$\begin{aligned} J(E_4)= \begin{pmatrix} a_{11} &{}\quad 0 &{}\quad 0&{}\quad 0&{}\quad 0\\ a_{21} &{}\quad a_{22} &{}\quad a_{23}&{}\quad a_{24} &{}\quad 0\\ a_{31} &{}\quad 0&{}\quad a_{33} &{}\quad 0 &{}\quad 0\\ 0 &{} \quad 0 &{}\quad 0&{}\quad a_{44} &{}\quad 0\\ a_{51} &{}\quad a_{52} &{}\quad 0 &{}\quad a_{54}&{}\quad a_{55} \end{pmatrix}, \end{aligned}$$

    where

    $$\begin{aligned} a_{11}&=\mu _{m}(0,Q_{m4},0)-d_{m}-\frac{v_{m}+D}{L}, a_{21}=-\frac{\partial \mu _{m}}{\partial M}(0,Q_{m4},0)Q_{m4},\\ a_{22}&=\frac{\partial \rho _m}{\partial Q_m}(Q_{m4})g_m(N_b)-r_m\bar{I}_m(0,0), a_{23}=\rho _{m}(Q_{m4})\frac{\partial g_m}{\partial N}(N_b),\\ a_{24}&=\frac{aq}{\delta }-\frac{\partial \mu _{m}}{\partial B}(0,Q_{m4},0)Q_{m4}, a_{31}=-\rho _{m}(Q_{m4})g_{m}(N_{b}),~ a_{33}=-\frac{D}{L},\\ a_{44}&=-d_{b}-\frac{D}{L}, a_{51}=\frac{\partial \mu _{c}}{\partial M}(0,Q_{m4}), a_{52}=\frac{\partial \mu _{c}}{\partial Q_{m}}(0,Q_{m4}),\\ a_{54}&=-\frac{r_{b}}{\gamma }g_{b}(N_b,0), a_{55}=-\frac{D}{L}. \end{aligned}$$

    It can be observed that \(J(E_4)\) has five eigenvalues \(a_{ii}\), \(i=1,\cdots ,5\). Note that \(a_{ii}<0\) for \(i=2,3,4,5.\) Therefore, if \(d_m>d_m^*\) holds, then \(a_{11}<0\). This means that all the five eigenvalues of \(J(E_4)\) have negative real parts. This shows that \(E_4\) is locally asymptotically stable.

  2. (ii)

    The existence of \(E_5\) is from Theorem 2 in (Wang et al. 2007). The Jacobian matrix at \(E_5\) is

    $$\begin{aligned} J(E_{5})= \begin{pmatrix} a_{11} &{}\quad a_{12} &{}\quad 0&{}\quad a_{14}&{}\quad 0\\ a_{21} &{}\quad a_{22} &{}\quad a_{23}&{} \quad a_{24} &{}\quad 0\\ a_{31} &{}\quad a_{32}&{}\quad a_{33} &{}\quad a_{34} &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad a_{44} &{}\quad 0\\ a_{51} &{}\quad a_{52} &{}\quad 0 &{}\quad a_{54}&{}\quad a_{55} \end{pmatrix}, \end{aligned}$$

    where

    $$\begin{aligned} \begin{aligned} a_{11}&=\frac{\partial \mu _{m}}{\partial M}(M_{5},Q_{m5},0)M_5,\\a_{12}&=\frac{\partial \mu _{m}}{\partial Q_{m}}(M_5,Q_{m5},0)M_5,\\a_{14}&=\frac{\partial \mu _{m}}{\partial B}(M_5,Q_{m5},0)M_5,\\ a_{21}&=-\frac{\partial \mu _{m}}{\partial M}(M_5,Q_{m5},0)Q_{m5}, a_{22}=\frac{\partial \rho _m}{\partial Q_m}(Q_{m5})g_m(N_5)-r_m\bar{I}_m(0,M_5),\\ a_{23}&=\rho _{m}(Q_{m5})\frac{\partial g_m}{\partial N}(N_5), a_{24}=\frac{aq}{\delta }-\frac{\partial \mu _{m}}{\partial B}(M_{5},Q_{m5},0)Q_{m5},\\ a_{31}&=-\rho _{m}(Q_{m5})g_{m}(N_{5}), a_{32}=-\frac{\partial \rho _m}{\partial Q_m}(Q_{m5})g_m(N_5)M_5,\\ a_{33}&=-\frac{D}{L}-\rho _{m}(Q_{m5})\frac{\partial g_{m}}{\partial N}(N_5)M_5, a_{34}=-qr_bg_b(N_5,C_5),\\ a_{44}&=r_{b}g_{b}(N_5,C_5)-d_{b}-\frac{D}{L}-\frac{a}{\delta }M_5, a_{51}=\frac{\partial \mu _{c}}{\partial M}(M_5,Q_{m5}),\\ a_{52}&=\frac{\partial \mu _{c}}{\partial Q_{m}}(M_5,Q_{m5}), a_{54}=-\frac{r_{b}}{\gamma }g_{b}(N_5,C_5), a_{55}=-\frac{D}{L}. \end{aligned} \end{aligned}$$

    \(J(E_5)\) has eigenvalues \(a_{44}\), \(a_{55}\), and the remaining three eigenvalues satisfy

    $$\begin{aligned} \lambda ^3+A_1\lambda ^2+A_2\lambda +A_3=0, \end{aligned}$$

    where

    $$\begin{aligned} A_1&=-(a_{11}+a_{22}+a_{33}),\\ A_2&=a_{11}a_{22}+(a_{11}+a_{22})a_{33}-(a_{23}a_{32}+a_{12}a_{21}),\\ A_3&=-a_{11}a_{22}a_{33} -a_{12}a_{23}a_{31}+a_{11}a_{23}a_{32}+a_{12}a_{21}a_{33}. \end{aligned}$$

    A direct calculation gives \(A_i>0\), \(i=1,2,3\) and \(A_1A_2-A_3>0\). According to the Routh–Hurwitz criterion, the three eigenvalues have negative real parts. It is clear that \(a_{55}<0\). If \(d_b>d_{b2}\) holds, then \(a_{44}<0\). This shows that all the five eigenvalues of \(J(E_5)\) have negative real parts if \(d_b>d_{b2}\) holds. Hence, \(E_5\) is locally asymptotically stable.

(iii)-(iv) Define a mapping \(G:{\mathbb {R}}^+\times {\mathbb {R}}^5\rightarrow {\mathbb {R}}^5\) by

$$\begin{aligned} G(d_b,M,Q_m,N,B,C)=\begin{pmatrix} \mu _m(M,Q_m,B)M-d_mM-\frac{v_m+D}{L}M\\ \rho _m(Q_m)g_m(N)+qf(B)-\mu _m(M,Q_m,B)Q_m\\ \frac{D}{L}(N_b-N)-\rho _m(Q_m)g_m(N)M-qr_bg_b(N,C)B\\ r_bg_b(N,C)B-d_bB-\frac{D}{L}B-f(B)M\\ \mu _c(M,Q_m)-\frac{1}{\gamma }r_bg_b(N,C)B-\frac{D}{L}C\\ \end{pmatrix}. \end{aligned}$$

It follows that \(G(d_b,M_5,Q_{m5},N_5,0,C_5)=0\). Let

$$\begin{aligned}H:=G_{(M,Q_m,N,B,C)}(d_{b2},M_5,Q_{m5},N_5,0,C_5).\end{aligned}$$

For any \((\zeta _1,\zeta _2,\zeta _3,\zeta _4,\zeta _5)\in {\mathbb {R}}^5\), we have

$$\begin{aligned} H[\zeta _1,\zeta _2,\zeta _3,\zeta _4,\zeta _5]= \begin{pmatrix} h_1(\zeta _1,\zeta _2,\zeta _4)\\ h_2(\zeta _1,\zeta _2,\zeta _3,\zeta _4)\\ h_3(\zeta _1,\zeta _2,\zeta _3,\zeta _4)\\ 0\\ h_4(\zeta _1,\zeta _2,\zeta _4,\zeta _5) \end{pmatrix}, \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} h_1(\zeta _1,\zeta _2,\zeta _4)=&\frac{\partial \mu _{m}}{\partial M}(M_{5},Q_{m5},0)M_5\zeta _1+\frac{\partial \mu _{m}}{\partial Q_{m}}(M_5,Q_{m5},0)M_5\zeta _2\\ {}&+\frac{\partial \mu _{m}}{\partial B}(M_5,Q_{m5},0)M_5\zeta _4,\\h_2(\zeta _1,\zeta _2,\zeta _3,\zeta _4)=&-\frac{\partial \mu _{m}}{\partial M}(M_5,Q_{m5},0)Q_{m5}\zeta _1\\ {}&+\left( \frac{\partial \rho _m}{\partial Q_m}(Q_{m5})g_m(N_5)-r_m\bar{I}_m(0,M_5)\right) \zeta _2\\ {}&+\rho _{m}(Q_{m5})\frac{\partial g_m}{\partial N}(N_5)\zeta _3+\left( {\frac{aq}{\delta }}-\frac{\partial \mu _{m}}{\partial B}(M_{5},Q_{m5},0)Q_{m5}\right) \zeta _4,\\h_3(\zeta _1,\zeta _2,\zeta _3,\zeta _4)=&-\rho _{m}(Q_{m5})g_{m}(N_{5})\zeta _1-\frac{\partial \rho _m}{\partial Q_m}(Q_{m5})g_m(N_5)M_5\zeta _2\\ {}&-\left( \frac{D}{L}+\rho _{m}(Q_{m5})\frac{\partial g_{m}}{\partial N}(N_5)M_5\right) \zeta _3-qr_bg_b(N_5,C_5)\zeta _4,\\h_4(\zeta _1,\zeta _2,\zeta _4,\zeta _5)\!=&\frac{\partial \mu _{c}}{\partial {M}}(M_5,Q_{m5})\zeta _1 \!+\!\frac{\partial \mu _{c}}{\partial Q_{m}}(M_5,Q_{m5})\zeta _2\!-\!\frac{r_{b}}{\gamma }\!g_{b}(N_5,C_5)\zeta _4 \!-\!\frac{D}{L}\zeta _5. \end{aligned} \end{aligned}$$

If \((\zeta _1,\zeta _2,\zeta _3,\zeta _4,\zeta _5) \in \ker H\), then

$$\begin{aligned} \begin{aligned}&h_1(\zeta _1,\zeta _2,\zeta _4)=0,~ h_2(\zeta _1,\zeta _2,\zeta _3,\zeta _4)=0,\\&\quad h_3(\zeta _1,\zeta _2,\zeta _3,\zeta _4)=0, h_4(\zeta _1,\zeta _2,\zeta _4,\zeta _5)=0. \end{aligned} \end{aligned}$$
(A.2)

Let \(\zeta _4=1\), then (A.2) has a unique solution \((\hat{\zeta }_{1},\hat{\zeta }_{2},\hat{\zeta }_{3},1,\hat{\zeta }_{5})\). This implies that \(\dim \ker H=1\) and \(\ker H={{\,\mathrm{span}\,}}\{\hat{\zeta }_{1},\hat{\zeta }_{2},\hat{\zeta }_{3},1,\hat{\zeta }_{5}\}\). It is also easy to show that \({{\,\mathrm{codim}\,}}{{\,\mathrm{range}\,}}H=1\) as

$$\begin{aligned} {{\,\mathrm{range}\,}}H=&\left\{ (\omega _1,\omega _2,\omega _3,\omega _4,\omega _5)\in {\mathbb {R}}^5:\omega _4=0\right\} , \end{aligned}$$

and

$$\begin{aligned}&G_{d_b(M,Q_m,N,B,C)}(d_{b5},M_5,Q_{m5},N_5,0,C_5)(\hat{\zeta }_{1}, \hat{\zeta }_{2},\hat{\zeta }_{3},1,\hat{\zeta }_{5})\\&\quad =(0,0,0,-1,0)\notin {{\,\mathrm{range}\,}}H. \end{aligned}$$

By using Theorem 1.7 in (Crandall and Rabinowitz 1971), there exists a \(\delta _2>0\) such that all positive steady states of (8) near \((d_{b5},M_5,Q_{m5},N_5,0,C_5)\) lie on a smooth curve

$$\begin{aligned}\Gamma _{bm}=\{(d_b(s),M_{6}(s),Q_{m6}(s),N_{6}(s),B_{6}(s),C_{6}(s)):0<s<\delta _2\}\end{aligned}$$

with the form

$$\begin{aligned} \begin{aligned} {\left\{ \begin{array}{ll} M_{6}(s)=M_{5}{+}s\hat{\zeta }_1{+}o(s),\\ Q_{m6}(s)=Q_{m5}{+}s\hat{\zeta }_2{+}o(s),\\ N_{6}(s)=N_5{+}s\hat{\zeta }_3{+}o(s),&{}\\ B_{6}(s)=s+o(s),~ C_{6}(s)=C_5+s\hat{\zeta }_5+o(s).&{} \end{array}\right. } \end{aligned} \end{aligned}$$

This completes the proof of part (iv). Note that the proof of part (iii) is similar to those in Theorem 2. Then we omit it here. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Zhang, J. & Wang, H. Dynamics of Stoichiometric Autotroph–Mixotroph–Bacteria Interactions in the Epilimnion. Bull Math Biol 84, 5 (2022). https://doi.org/10.1007/s11538-021-00962-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-021-00962-9

Keywords

Mathematics Subject Classification

Navigation