Skip to main content
Log in

Parameter Estimation in a PDE Model for the Spatial Spread of Cocoa Black Pod Disease

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, we develop an epidemiological model with both environmental (primary infection from the environmental spores reservoir) and direct transmission (secondary infection from an infected host to a susceptible pod). This model simulates the spatiotemporal evolution of cocoa black pod disease caused by Phytophthora megakarya. Since reliable parameter estimation is a central issue for modeling realistic biological systems, we used a mechanistic–statistical approach to estimate model parameters from real observations of a specific cocoa plot. In addition, to refine numerical simulations of the pathosystem, data describing the shade intensity all over the plot were exploited and led to increased model predictions accuracy and also highlighted a higher number of infected pods located in areas of the plot with higher shading intensity. Recommendations in terms of promoting cocoa farming in systems with low shading intensity may be evident if these results are confirmed. Our results also highlight the importance of the environmental spore reservoir in black pod disease dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abboud C, Bonnefon O, Parent E, Soubeyrand S (2019) Dating and localizing an invasion from post-introduction data and a couple reaction–diffusion–absorption model. J Math Biol 79:765–789

    Article  MathSciNet  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. Trans Autom Control. 19(6):716–723

    Article  MathSciNet  Google Scholar 

  • Akrofi AY, Amoako-Atta I, Assuah M, Asare K (2015) Black pod disease on cacao (Theobroma cacao, L) in Ghana: spread of Phytophthora megakarya and role of economic plants in the disease epidemiology. Crop Prot 72:66–75

    Article  Google Scholar 

  • Ashyraliyev M, Fomekong-Nanfack Y, Kaandorp JA, Blom JG (2009) Parameter estimation for biochemical models. Syst Biol 276:886–902

    Google Scholar 

  • Avelino J, Vílchez S, Segura-Escobar MB, Brenes-Loaiza MA, de Virginio Filho E, de Virginio Filho E M, Casanoves F (2020) Shade tree Chloroleucon eurycyclum promotes coffee leaf rust by reducing uredospore wash-off by rain. Crop Prot 129:0261–2194

    Article  Google Scholar 

  • Babin R, Ten Hoopen GM, Cilas C, Enjalric F, Yede Gendre P, Lumaret JP (2010) Impact of shade on the spatial distribution of Sahlbergella singularis in traditional cocoa agroforests. Agric For Entomol 12(1):69–79

    Article  Google Scholar 

  • Berliner LM (2003) Physical-statistical modeling in geophysics. J Geophys Res 108:8776

    Article  Google Scholar 

  • Bos MM, Steffan-Dewenter I, Tscharntke T (2006) Shade tree management affects fruit abortion, insect pests and pathogens of cacao. Agroecology, Gottingen University, Waldweg 26, D-37073 Gottingen, Germany

  • Bousset L, Jumel S, Garreta V, Picault H, Soubeyrand S (2015) Transmission of Leptosphaeria maculans from a cropping season to the following one. Ann Appl Biol 166(3):530–543

    Article  Google Scholar 

  • Brasier CM, Griffin MJ, Ward MR, Idowu OL, Taylor B, Adedoyin SF (1981) Epidemiology of Phytophthora on Cocoa in Nigeria: Final Report of the International Cocoa Black Pod Research Project. Phytopathological Papers. Commonwealth Mycological Institute, Kew, Surrey-London

  • Brunel N (2008) Parameter estimation of ODE’s via nonparametric estimators. Electron J Stati 2:1242–1267

  • Butler DR (1980) Dew and thermal lag: measurements and estimates of wetness duration on cocoa pods. Q.J.R. Meteorol Soc 106:539–550

    Article  Google Scholar 

  • Chou IC, Voit EO (2009) Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Math Biosci 219:57–83

    Article  MathSciNet  Google Scholar 

  • Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. Wiley, Hoboken

    MATH  Google Scholar 

  • Deberdt P, Mfegue CV, Tondje PR, Bon MC, Ducamp M, Hurard C, Begoude BAD, Ndoumbe-Nkeng M, Hebbar PK, Cilas C (2007) Impact of environmental factors, chemical fungicide and biological control on cacao pod production dynamics and black pod disease in Cameroon. Biol Control 44:149–159

    Article  Google Scholar 

  • Djidjou-Demasse R, Moury B, Fabre F (2017) Mosaics often outperform pyramids: insights from a model comparing strategies for the deployment of plant resistance genes against viruses in agricultural landscapes. New Phytol 216:239–253

    Article  Google Scholar 

  • Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman and Hall, New York

    Book  Google Scholar 

  • Lewis PE, Ward JP (1991) The finite element method principles and applications. Loughborough University of Technology. Addison-Wesley Publishing Company, New York

    Google Scholar 

  • Li P, Vu QD (2013) Identification of parameter correlations for parameter estimation in dynamic biological models. BMC Syst Biol 7(1):1–12

    Article  Google Scholar 

  • Li Z, Osborne M, Prvan T (2005) Parameter estimation in ordinary differential equations. IMA J Numer Anal 25:264–285

    Article  MathSciNet  Google Scholar 

  • Liliacci G, Khammash M (2010) Parameter estimation and model selection in computational biology. PLoS Comput Biol 6(3):1000696

    Article  MathSciNet  Google Scholar 

  • Meeker WQ, Escobar LA (1995) Teaching about approximate confidence regions based on maximum likelihood estimation. Am Stat 49(1):48–53

    Google Scholar 

  • Mouen Bedimo JA, Njiayouom I, Bieysse D, Ndoumbè Nkeng M, Cilas C, Nottéghem JL (2008) Effect of shade on arabica coffee berry disease development: toward an agroforestry system to reduce disease impact. Phytopathology 98:1320–1325

    Article  Google Scholar 

  • Ndoumbè-Nkeng M, Efombagn MIB, Bidzanga NL, Sache I, Cilas C (2017) Spatio-temporal dynamics on a plot scale of cocoa black pod rot caused by Phytophthora megakarya in Cameroon. Eur J Plant Pathol 147:579–590

    Article  Google Scholar 

  • Ndoungue MM, Petchayo S, Techou Z, Nana W, Nembot FCG, Fontem AD, Ten Hoopen GM (2018) The impact of soil treatments on black pod rot (caused by Phytophthora megakarya) of cacao in Cameroon. Biol Control 123:9–17

    Article  Google Scholar 

  • Nembot C, Takam Soh P, ten Hoopen GM, Dumont Y (2018) Modeling the temporal evolution of cocoa black pod rot disease caused by Phytophthora megakarya. Math Methods Appl Sci 41(18):8816–8843

    Article  MathSciNet  Google Scholar 

  • Nembot C, Takam Soh P, Ambang Z, ten Hoopen GM, Dumont Y (2017) On the use of Mathematical Modelling to study the impact of phytosanitation on cocoa black pod disease caused by Phytophthora megakarya. International Symposium on Cocoa Research (ISCR), Lima, Peru, 13–17 November 2017

  • Ngo Bieng MA, Babin R, ten Hoopen GM, Cilas C (2010) Spatial pattern analysis of tropical agroforests: methods for ecological and agronomical issues. Poster presented at the XIth ESA Congress Agro2010 Montpellier, Montpellier, France, 29 August–3 September

  • Ngo Bieng M, Gidoin C, Avelino J, Cilas C, Deheuvels O, Wery J (2013) Diversity and spatial clustering of shade trees affect cacao yield and pathogen pressure in Costa Rican agroforests. Basic Appl Ecol 14:329–336

    Article  Google Scholar 

  • Nyasse S, Efombagn MIB, Kebe BI, Tahi M, Despreaux D, Cilas C (2007) Integrated management of Phytophthora diseases on cocoa Theobroma cacao L impact of plant breeding on pod rot incidence. Crop Prot 26:40–45

    Article  Google Scholar 

  • Pao CV (1992) Parabolic boundary-value problems. Nonlinear parabolic and elliptic equations. Springer, Boston

    MATH  Google Scholar 

  • Peacock SJ, Krkošek M, Lewis MA, Lele S (2017) Study design and parameter estimability for spatial and temporal ecological models. Ecol Evol 7(2):762–770

    Article  Google Scholar 

  • Puig AS, Ali S, Strem M, Sicher R, Gutierrez OA, Bailey BA (2018) The differential influence of temperature on Phytophthora megakarya and Phytophthora palmivora pod lesion expansion, mycelia growth, gene expression, and metabolite profiles. Physiol Mol Plant Pathol 102:95–112

    Article  Google Scholar 

  • Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, Timmer J (2009) Structural and practical identifiability analysis of partially observable dynamical models by exploiting the profile likelihood. Bioinformatics 25:1923–1929

    Article  Google Scholar 

  • Roques L, soubeyrand S, Rousselet J (2011) A-statistical-reaction–difusion approach for analyzing expansion processes. J Theor Biol 274:43–51

    Article  Google Scholar 

  • Ristaino JB, Gumpertz ML (2000) New frontiers in the study of dispersal and spatial analysis of epidemics caused by species in the genus Phytophthora. Annu Rev Phytopathol 38:541–576

    Article  Google Scholar 

  • Soubeyrand S, Roques L (2014) Parameter estimation for reaction–diffusion models of biological invasions. Popul Ecol 56:427–434

    Article  Google Scholar 

  • Takam Soh P, Ndoumbè-Nkeng M, Sache I, Nguema EN, Gwet H, Chadoeuf J (2013) Development stage-dependent susceptibility of cocoa fruit to pod rot caused by Phytophthora megakarya. Eur J Plant Pathol 135(2):363–370

    Article  Google Scholar 

  • Ten Hoopen GM, Sounigo O, Babin R, Yede Dikwe G, Cilas C (2010) Spatial and temporal analysis of a Phytophthora megakarya epidemic in a plantation in the centre region of Cameroon. Proceedings of the 16th International Cocoa Research Conference 16–21 November 2009, Denpasar-Bali, Indonesia (ISBN 978-065-959-5), pp 683–687

  • Tremblay M, Wallach D (2004) Comparison of parameter estimation methods for crop models. Agronomie 24:351–365

    Article  Google Scholar 

  • Turchin P (1998) Quantitative analysis of of movement. Sunderlend (mass): sinauer assoc. In: Murray JD (ed) Mathematical Biology. Third edition interdisciplinary Applied Mathematics. Springer, New York

    Google Scholar 

  • Wikle CK (2003) Hierarchical models in environmental science. Int Stat Rev 71:181–199

    Article  Google Scholar 

  • Yaglom AM (1987) Correlation theory of stationary and related random functions. Basic results, vol 1. Springer, Berlin, p 526

Download references

Acknowledgements

The first author is grateful to the DP Agroforesterie Cameroon, the French Government, and the French Embassy in Yaounde (SCAC), Cameroon for logistical and financial support during the preparation of this manuscript and also to the CETIC Yaoundé.

Authors together are very grateful to the experimental design initiators and all the data providers in the field, Olivier Sounigo, Yede, Maybelline Escalante, the farmer René, and Victor Ondoa, Benoit Owona, Maurice Douandji and Junior Zomo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Takam Soh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (xlsx 76 KB)

Supplementary material 2 (xlsx 15 KB)

Appendices

Appendix A

In this appendix, we provide numerical simulations for susceptible pod compartment S (Fig. 15) and spores produced by infected pods \(P_1\) (Fig. 16) for the set of parameters \(\hat{\theta }\).

Fig. 15
figure 15

Spatial dynamics of the susceptible pods compartment S with \(P_2^0\) defined via a covariate function (namely the shading function) and with \(\theta =\hat{\theta }\)

Appendix B

In this Appendix, we provide estimation results (\(\hat{\theta '}\)) for the “benchmark” estimation where we define \(P_2^0\) as a piecewise constant function. We also present the data histograms for the spatiotemporal raw residual analysis for the two estimation strategies.

  • Estimation results with \(P_2^0\) defined as a piecewise constant function.

    The “benchmark” estimation of model parameters through the optimization function led to convergence after around 3000 iterations. The optimal value computed for the log-likelihood function is \(-7.2923e+04\), and the corresponding set of parameters \( \hat{\theta '}\) (with the corresponding asymptotic standard errors) are given in Table 5.

  • Raw residual analysis for the two estimation strategies.

Fig. 16
figure 16

Spatial dynamics of the spore produced by infected pods \(P_1\) with \(P_2^0\) defined via a covariate function (namely the shading function) and with \(\theta =\hat{\theta }\)

Fig. 17
figure 17

Histograms of residuals, with \(P_2^0\) defined as a piecewise constant function, for weeks \(\in \{2, 10 , 20, 29, 35, 4\}1\); the horizontal axis gives the residual values \(|I_\mathrm{obs}(t_i,x_i) - I_{{\widehat{\theta }}}(t_i,x_i)|\)

Fig. 18
figure 18

Histograms of residuals, with \(P_2^0\) defined via a covariate function (namely the shading intensity data), for weeks \(\in \{2, 10 , 20, 29, 35, 41\}\); The horizontal axis gives the residual values \(|I_\mathrm{obs}(t_i,x_i) - I_{{\widehat{\theta }}}(t_i,x_i)|\)

Table 5 Epidemiological parameter estimates with \(P_2^0\) defined as a piecewise constant function

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nembot Fomba, C.G., ten Hoopen, G.M., Soubeyrand, S. et al. Parameter Estimation in a PDE Model for the Spatial Spread of Cocoa Black Pod Disease. Bull Math Biol 83, 101 (2021). https://doi.org/10.1007/s11538-021-00934-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-021-00934-z

Keywords

Navigation