Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Bulletin of Mathematical Biology
  3. Article
Modelling Nutrient Uptake by Individual Hyphae of Arbuscular Mycorrhizal Fungi: Temporal and Spatial Scales for an Experimental Design
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Appressoria and phosphorus fluxes in mycorrhizal plants: connections between soil- and plant-based hyphae

12 June 2020

Alessandra Pepe, Manuela Giovannetti & Cristiana Sbrana

Exploring the secrets of hyphosphere of arbuscular mycorrhizal fungi: processes and ecological functions

30 July 2022

Fei Wang, Lin Zhang, … Gu Feng

Effects of long-term water reduction and nitrogen addition on fine roots and fungal hyphae in a mixed mature Pinus koraiensis forest

18 August 2021

Cunguo Wang, Ivano Brunner, … Mai-He Li

Root growth and presence of Rhizophagus irregularis distinctly alter substrate hydraulic properties in a model system with Medicago truncatula

30 September 2020

Richard Pauwels, Jan Jansa, … Michael Bitterlich

Facilitation of plant water uptake by an arbuscular mycorrhizal fungus: a Gordian knot of roots and hyphae

06 April 2020

David Püschel, Michael Bitterlich, … Jan Jansa

Plant-soil feedback is shut down when nutrients come to town

06 April 2019

Dina in ’t Zandt, Annelien van den Brink, … Eric J. W. Visser

Linking rhizosphere processes across scales: Opinion

31 January 2022

A. Schnepf, A. Carminati, … D. Vetterlein

Responses of mycorrhizal colonization to nitrogen and phosphorus addition in fourteen woody and herbaceous species: the roles of hypodermal passage cells and penetration points

02 October 2021

Liying Xu, Siyuan Wang, … Lixue Yang

The effect of arbuscular mycorrhizal fungi Rhizophagus intraradices and soil microbial community on a model plant community in a post-mining soil

11 July 2019

Masoud M. Ardestani, Veronika Jílková, … Jan Frouz

Download PDF
  • Original Article
  • Open Access
  • Published: 12 January 2011

Modelling Nutrient Uptake by Individual Hyphae of Arbuscular Mycorrhizal Fungi: Temporal and Spatial Scales for an Experimental Design

  • Andrea Schnepf1,
  • Davey Jones2 &
  • Tiina Roose3 

Bulletin of Mathematical Biology volume 73, pages 2175–2200 (2011)Cite this article

  • 1094 Accesses

  • 29 Citations

  • Metrics details

Abstract

Arbuscular mycorrhizas, associations between plant roots and soil fungi, are ubiquitous among land plants. Arbuscular mycorrhizas can be beneficial for plants by overcoming limitations in nutrient supply. Hyphae, which are long and thin fungal filaments extending from the root surface into the soil, increase the volume of soil accessible for plant nutrient uptake. However, no models so far specifically consider individual hyphae. We developed a mathematical model for nutrient uptake by individual fungal hyphae in order to assess suitable temporal and spatial scales for a new experimental design where fungal uptake parameters are measured on the single hyphal scale. The model was developed based on the conservation of nutrients in an artificial cylindrical soil pore (capillary tube) with adsorbing wall, and analysed based on parameter estimation and non-dimensionalisation. An approximate analytical solution was derived using matched asymptotic expansion. Results show that nutrient influx into a hypha from a small capillary tube is characterized by three phases: Firstly, uptake rapidly decreases as the hypha takes up nutrients, secondly, the depletion zone reaches the capillary wall and thus uptake is sustained by desorption of nutrients from the capillary wall, and finally, uptake goes to zero after nutrients held on the capillary wall have been completely depleted. Simulating different parameter regimes resulted in recommending the use of capillaries filled with hydrogel instead of water in order to design an experiment operating over measurable time scales.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  • Abdallah, E. A. M., & Gagnon, G. A. (2009). Arsenic removal from groundwater through iron oxyhydroxide coated waste products. Can. J. Civ. Eng., 36, 881–888.

    Article  Google Scholar 

  • Abu Ali, R., Murphy, R. J. & Dickinson, D. J. (1999). Investigation of the extracellular mucilaginous materials produced by some wood decay fungi. Mycol. Res., 103, 1453–1461.

    Article  Google Scholar 

  • Allen, M. F. (2007). Mycorrhizal fungi: Highways for water and nutrients in arid soils. Vadose Zone J., 6, 291–297.

    Article  Google Scholar 

  • Barber, S. A. (1995). Soil nutrient bioavailability: a mechanistic approach. New York: Wiley.

    Google Scholar 

  • Boyle, J. R., & Voigt, G. K. (1973). Biological weathering of silicate minerals. Plant Soil, 38, 191–201.

    Article  Google Scholar 

  • Cameron, K. C., & Buchan, G. D. (2006). Porosity and pore size distribution. In R. Lal (Ed.), Encyclopedia of soil science (pp. 1350–1353). Boca Raton: CRC Press.

    Google Scholar 

  • Chen, J. S., Mansell, R. S., Nkedi-Kizza, P., & Burgoa, B. A. (1996). Phosphorus transport during transient, unsaturated water flow in an acid sandy soil. Soil Sci. Soc. Am. J., 60, 42–48.

    Article  Google Scholar 

  • Crank, J. (1975). The mathematics of diffusion. Oxford: Clarendon Press.

    Google Scholar 

  • da Silveira, A. P. D., & Cardoso, E. J. B. N. (2004). Arbuscular mycorrhiza and kinetic parameters of phosphorus absorption by bean plants. Sci. Agric., 61, 203–209.

    Article  Google Scholar 

  • Darrah, P. R., Jones, D. L., Kirk, G. J. D., & Roose, T. (2006). Modelling the rhizosphere: a review of methods for ‘upscaling’ to the whole-plant scale. Eur. J. Soil Sci., 57, 13–25.

    Article  Google Scholar 

  • Deressa, T. G., & Schenk, M. K. (2008). Contribution of roots and hyphae to phosphorus uptake of mycorrhizal onion (Allium cepa L.)—a mechanistic modeling approach. J. Plant Nutr. Soil Sci., 171, 810–820.

    Article  Google Scholar 

  • Ezawa, T., Smith, S. E., & Smith, F. A. (2002). P metabolism and transport in AM fungi. Plant Soil, 244, 221–230.

    Article  Google Scholar 

  • Facelli, E., Smith, S. E., Facelli, J. M., Christophersen, H. M., & Smith, F.A. (2010). Underground friends or enemies: model plants help to unravel direct and indirect effects of arbuscular mycorrhizal fungi on plant competition. New Phytol., 185, 1050–1061.

    Article  Google Scholar 

  • Fowler, A. C. (1997). Mathematical models in the applied sciences. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hinsinger, P., Gobran, G. R., Gregory, P. J., & Wenzel, W. W. (2005). Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytol., 168, 293–303.

    Article  Google Scholar 

  • Jakobsen, I., Abbott, L. K., & Robson, A. D. (1992). External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol., 120, 371–380.

    Article  Google Scholar 

  • Jolicoeur, M., Germette, S., Gaudette, M., Perrier, M., & Bécard, G. (1998). Intracellular pH in Arbuscular Mycorrhizal Fungi: a symbiotic physiological marker. Plant Physiol., 116, 1279–1288.

    Article  Google Scholar 

  • Jones, D. L., & Hinsinger, P. (2008). The rhizosphere: complex by design. Plant Soil, 312, 1–6.

    Article  Google Scholar 

  • Jones, D. L., Hodge, A., & Kuzyakov, Y. (2004). Plant and mycorrhizal regulation of rhizodeposition. New Phytol., 163, 459–480.

    Article  Google Scholar 

  • Jongmans, A. G., Van Breemen, N., Lundström, U., Van Hees, P. A. W., Finlay, R. D., Srinivasan, M., Unestam, T., Giesler, R., Melkerud, P. A., & Olsson, M. (1997). Rock-eating fungi [4]. Nature, 389, 682–683.

    Article  Google Scholar 

  • Kirk, G. J. D., Santos, E. E., & Santos, M. B. (1999). Phosphate solubilization by organic anion excretion from rice growing in aerobic soil: Rates of excretion and decomposition, effects on rhizosphere pH and effects on phosphate solubility and uptake. New Phytol., 142, 185–200.

    Article  Google Scholar 

  • Koorevaar, P., Menelik, G., & Dirksen, C. (1983). Elements of soil physics. Amsterdam: Elsevier.

    Google Scholar 

  • Krcmar, P., Novotny, C., Marais, M. F., & Joseleau, J. P. (1999). Structure of extracellular polysaccharide produced by lignin-degrading fungus Phlebia radiata in liquid culture. Int. J. Biol. Macromol., 24, 61–64.

    Article  Google Scholar 

  • Leigh, J., Hodge, A., & Fitter, A. H. (2009). Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol., 181, 199–207.

    Article  Google Scholar 

  • Leitner, D., Klepsch, S., Ptashnyk, M., Marchant, A., Kirk, G. J. D., Schnepf, A., & Roose, T. (2010). A dynamic model of nutrient uptake by root hairs. New Phytol., 185, 792–802.

    Article  Google Scholar 

  • Lide, D. R. (2000). Handbook of chemistry and physics (83th ed.) Boca Raton: CRC Press.

    Google Scholar 

  • Mackay, A. D., & Barber, S. A. (1985). Soil-moisture effect on potassium uptake by corn. Agron. J., 77, 524–527.

    Article  Google Scholar 

  • McKeague, J. A., Chesire, M. V., Andreux, F., & Berthelin, J. (1986). Organo mineral complexes in relation to pedogenesis. In P. M. Huang, M. Schnitzer (Eds.), Interactions of soil minerals with natural organics and microbes (pp. 549–592). Madison: SSSA.

    Google Scholar 

  • Moribe, K., Nomizu, N., Izukura, S., Yamamoto, K., Tozuka, Y., Sakurai, M., Ishida, A., Nishida, H., & Miyazaki, M. (2008). Physicochemical morphological and therapeutic evaluation of agarose hydrogel particles as a reservoir for basic fibroblast growth factor. Pharm. Dev. Technol., 13, 541–547.

    Article  Google Scholar 

  • Ockendon, H., & Ockendon, J. R. (1995). Cambridge texts in applied mathematics. Viscous flow. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Park, C. D., Walker, J., Tannenbaum, R., Stiegman, A. E., Frydrych, J., & Machala, L. (2009). Sol-gel-derived iron oxide thin films on silicon: surface properties and interfacial chemistry. ACS Appl. Mater. Interfaces, 1, 1843–1846.

    Article  Google Scholar 

  • Pierard, G. E., Pierard-Franchimont, C., & Quatresooz, P. (2007). Fungal thigmotropism in onychomycosis and in a clear hydrogel pad model. Dermatoloty, 215, 107–113.

    Article  Google Scholar 

  • Plassard, C., & Dell, B. (2010). Phosphorus nutrition of mycorrhizal trees. Tree Physiol., 30, 1129–1139.

    Article  Google Scholar 

  • Roose, T., & Schnepf, A. (2008). Mathematical models of plant-soil interaction. Philos. Trans. R. Soc., Math. Phys. Eng. Sci., 366, 4597–4611.

    Article  MathSciNet  Google Scholar 

  • Roose, T., Fowler, A., & Darrah, P. (2001). A mathematical model of plant nutrient uptake. J. Math. Biol., 42, 347–360.

    Article  MathSciNet  MATH  Google Scholar 

  • Rosling, A., Roose, T., Herrmann, A. M., Davidson, F. A., Finlay, R. D., & Gadd, G. M. (2009). Approaches to modelling mineral weathering by fungi. Fungal Biol. Rev., 23(4), 138–144.

    Article  Google Scholar 

  • Saleque, M. A., & Kirk, G. J. (1995). Root-induced solubilization of phosphate in the rhizosphere of lowland rice. New Phytol., 129, 325–336.

    Article  Google Scholar 

  • Schnepf, A., & Roose, T. (2006). Modelling the contribution of arbuscular mycorrhizal fungi to plant phosphate uptake. New Phytol., 171, 669–682.

    Google Scholar 

  • Schnepf, A., Roose, T., & Schweiger, P. (2008). Impact of growth and uptake patterns of arbuscular mycorrhizal fungi on plant phosphorus uptake—a modelling study. Plant Soil, 312, 85–99.

    Article  Google Scholar 

  • Schweiger, P., & Jakobsen, I. (1999). The role of mycorrhizas in plant P nutrition: Fungal uptake kinetics and genotype variation. In G. Gissel-Nielsen, A. Jensen (Eds.), Plant nutrition—molecular biology and genetics (pp. 277–289). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Schweiger, P., & Jakobsen, I. (2000). Laboratory and field methods for measurement of hyphal uptake of nutrients in soil. Plant Soil, 226, 237–244.

    Article  Google Scholar 

  • Sharma, A. K., Srivastava, P. C., & Johri, B. N. (1999). Multiphasic zinc uptake system in mycorrhizal and nonmycorrhizal roots of French bean (Phaseolus vulgaris L.). Curr. Sci., 76, 228–230.

    Google Scholar 

  • Smith, S. E., Smith, F. A., & Jakobsen, I. (2003). Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol., 130, 16–20.

    Article  Google Scholar 

  • Staddon, P. L., Ramsey, C. B., Ostle, N., Ineson, P., & Fitter, A. H. (2003). Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C. Science, 300, 1138–1140.

    Article  Google Scholar 

  • Tinker, P. B., & Nye, P. H. (2000). Solute movement in the rhizosphere. London: Oxford University Press.

    Google Scholar 

  • Van Breemen, N., Finlay, R., Lundström, U., Jongmans, A. G., Giesler, R., & Olsson, M. (2000). Mycorrhizal weathering: a true case of mineral plant nutrition? Biogeochemistry, 49, 53–67.

    Article  Google Scholar 

  • Zheng, T., Liang, Y. H., Ye, S. H., & He, Z. Y. (2009). Superabsorbent hydrogels as carriers for the controlled-release of urea: experiments and a mathematical model describing the release rate. Biosyst. Eng., 102, 44–50.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Forest and Soil Sciences, BOKU—University of Natural Resources and Life Sciences Vienna, Peter Jordan-Str. 82, 1190, Vienna, Austria

    Andrea Schnepf

  2. Environment Centre Wales, Bangor University, Gwynedd, LL57 2UW, UK

    Davey Jones

  3. School of Engineering Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, UK

    Tiina Roose

Authors
  1. Andrea Schnepf
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Davey Jones
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Tiina Roose
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Andrea Schnepf.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Schnepf, A., Jones, D. & Roose, T. Modelling Nutrient Uptake by Individual Hyphae of Arbuscular Mycorrhizal Fungi: Temporal and Spatial Scales for an Experimental Design. Bull Math Biol 73, 2175–2200 (2011). https://doi.org/10.1007/s11538-010-9617-1

Download citation

  • Received: 23 April 2010

  • Accepted: 09 December 2010

  • Published: 12 January 2011

  • Issue Date: September 2011

  • DOI: https://doi.org/10.1007/s11538-010-9617-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Experimental design
  • Fungal nutrient uptake
  • Mineral weathering
  • Mycorhizosphere
  • Phosphorus cycling
  • Simulation model
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.