Abstract
Arbuscular mycorrhizas, associations between plant roots and soil fungi, are ubiquitous among land plants. Arbuscular mycorrhizas can be beneficial for plants by overcoming limitations in nutrient supply. Hyphae, which are long and thin fungal filaments extending from the root surface into the soil, increase the volume of soil accessible for plant nutrient uptake. However, no models so far specifically consider individual hyphae. We developed a mathematical model for nutrient uptake by individual fungal hyphae in order to assess suitable temporal and spatial scales for a new experimental design where fungal uptake parameters are measured on the single hyphal scale. The model was developed based on the conservation of nutrients in an artificial cylindrical soil pore (capillary tube) with adsorbing wall, and analysed based on parameter estimation and non-dimensionalisation. An approximate analytical solution was derived using matched asymptotic expansion. Results show that nutrient influx into a hypha from a small capillary tube is characterized by three phases: Firstly, uptake rapidly decreases as the hypha takes up nutrients, secondly, the depletion zone reaches the capillary wall and thus uptake is sustained by desorption of nutrients from the capillary wall, and finally, uptake goes to zero after nutrients held on the capillary wall have been completely depleted. Simulating different parameter regimes resulted in recommending the use of capillaries filled with hydrogel instead of water in order to design an experiment operating over measurable time scales.
References
Abdallah, E. A. M., & Gagnon, G. A. (2009). Arsenic removal from groundwater through iron oxyhydroxide coated waste products. Can. J. Civ. Eng., 36, 881–888.
Abu Ali, R., Murphy, R. J. & Dickinson, D. J. (1999). Investigation of the extracellular mucilaginous materials produced by some wood decay fungi. Mycol. Res., 103, 1453–1461.
Allen, M. F. (2007). Mycorrhizal fungi: Highways for water and nutrients in arid soils. Vadose Zone J., 6, 291–297.
Barber, S. A. (1995). Soil nutrient bioavailability: a mechanistic approach. New York: Wiley.
Boyle, J. R., & Voigt, G. K. (1973). Biological weathering of silicate minerals. Plant Soil, 38, 191–201.
Cameron, K. C., & Buchan, G. D. (2006). Porosity and pore size distribution. In R. Lal (Ed.), Encyclopedia of soil science (pp. 1350–1353). Boca Raton: CRC Press.
Chen, J. S., Mansell, R. S., Nkedi-Kizza, P., & Burgoa, B. A. (1996). Phosphorus transport during transient, unsaturated water flow in an acid sandy soil. Soil Sci. Soc. Am. J., 60, 42–48.
Crank, J. (1975). The mathematics of diffusion. Oxford: Clarendon Press.
da Silveira, A. P. D., & Cardoso, E. J. B. N. (2004). Arbuscular mycorrhiza and kinetic parameters of phosphorus absorption by bean plants. Sci. Agric., 61, 203–209.
Darrah, P. R., Jones, D. L., Kirk, G. J. D., & Roose, T. (2006). Modelling the rhizosphere: a review of methods for ‘upscaling’ to the whole-plant scale. Eur. J. Soil Sci., 57, 13–25.
Deressa, T. G., & Schenk, M. K. (2008). Contribution of roots and hyphae to phosphorus uptake of mycorrhizal onion (Allium cepa L.)—a mechanistic modeling approach. J. Plant Nutr. Soil Sci., 171, 810–820.
Ezawa, T., Smith, S. E., & Smith, F. A. (2002). P metabolism and transport in AM fungi. Plant Soil, 244, 221–230.
Facelli, E., Smith, S. E., Facelli, J. M., Christophersen, H. M., & Smith, F.A. (2010). Underground friends or enemies: model plants help to unravel direct and indirect effects of arbuscular mycorrhizal fungi on plant competition. New Phytol., 185, 1050–1061.
Fowler, A. C. (1997). Mathematical models in the applied sciences. Cambridge: Cambridge University Press.
Hinsinger, P., Gobran, G. R., Gregory, P. J., & Wenzel, W. W. (2005). Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytol., 168, 293–303.
Jakobsen, I., Abbott, L. K., & Robson, A. D. (1992). External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol., 120, 371–380.
Jolicoeur, M., Germette, S., Gaudette, M., Perrier, M., & Bécard, G. (1998). Intracellular pH in Arbuscular Mycorrhizal Fungi: a symbiotic physiological marker. Plant Physiol., 116, 1279–1288.
Jones, D. L., & Hinsinger, P. (2008). The rhizosphere: complex by design. Plant Soil, 312, 1–6.
Jones, D. L., Hodge, A., & Kuzyakov, Y. (2004). Plant and mycorrhizal regulation of rhizodeposition. New Phytol., 163, 459–480.
Jongmans, A. G., Van Breemen, N., Lundström, U., Van Hees, P. A. W., Finlay, R. D., Srinivasan, M., Unestam, T., Giesler, R., Melkerud, P. A., & Olsson, M. (1997). Rock-eating fungi [4]. Nature, 389, 682–683.
Kirk, G. J. D., Santos, E. E., & Santos, M. B. (1999). Phosphate solubilization by organic anion excretion from rice growing in aerobic soil: Rates of excretion and decomposition, effects on rhizosphere pH and effects on phosphate solubility and uptake. New Phytol., 142, 185–200.
Koorevaar, P., Menelik, G., & Dirksen, C. (1983). Elements of soil physics. Amsterdam: Elsevier.
Krcmar, P., Novotny, C., Marais, M. F., & Joseleau, J. P. (1999). Structure of extracellular polysaccharide produced by lignin-degrading fungus Phlebia radiata in liquid culture. Int. J. Biol. Macromol., 24, 61–64.
Leigh, J., Hodge, A., & Fitter, A. H. (2009). Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol., 181, 199–207.
Leitner, D., Klepsch, S., Ptashnyk, M., Marchant, A., Kirk, G. J. D., Schnepf, A., & Roose, T. (2010). A dynamic model of nutrient uptake by root hairs. New Phytol., 185, 792–802.
Lide, D. R. (2000). Handbook of chemistry and physics (83th ed.) Boca Raton: CRC Press.
Mackay, A. D., & Barber, S. A. (1985). Soil-moisture effect on potassium uptake by corn. Agron. J., 77, 524–527.
McKeague, J. A., Chesire, M. V., Andreux, F., & Berthelin, J. (1986). Organo mineral complexes in relation to pedogenesis. In P. M. Huang, M. Schnitzer (Eds.), Interactions of soil minerals with natural organics and microbes (pp. 549–592). Madison: SSSA.
Moribe, K., Nomizu, N., Izukura, S., Yamamoto, K., Tozuka, Y., Sakurai, M., Ishida, A., Nishida, H., & Miyazaki, M. (2008). Physicochemical morphological and therapeutic evaluation of agarose hydrogel particles as a reservoir for basic fibroblast growth factor. Pharm. Dev. Technol., 13, 541–547.
Ockendon, H., & Ockendon, J. R. (1995). Cambridge texts in applied mathematics. Viscous flow. Cambridge: Cambridge University Press.
Park, C. D., Walker, J., Tannenbaum, R., Stiegman, A. E., Frydrych, J., & Machala, L. (2009). Sol-gel-derived iron oxide thin films on silicon: surface properties and interfacial chemistry. ACS Appl. Mater. Interfaces, 1, 1843–1846.
Pierard, G. E., Pierard-Franchimont, C., & Quatresooz, P. (2007). Fungal thigmotropism in onychomycosis and in a clear hydrogel pad model. Dermatoloty, 215, 107–113.
Plassard, C., & Dell, B. (2010). Phosphorus nutrition of mycorrhizal trees. Tree Physiol., 30, 1129–1139.
Roose, T., & Schnepf, A. (2008). Mathematical models of plant-soil interaction. Philos. Trans. R. Soc., Math. Phys. Eng. Sci., 366, 4597–4611.
Roose, T., Fowler, A., & Darrah, P. (2001). A mathematical model of plant nutrient uptake. J. Math. Biol., 42, 347–360.
Rosling, A., Roose, T., Herrmann, A. M., Davidson, F. A., Finlay, R. D., & Gadd, G. M. (2009). Approaches to modelling mineral weathering by fungi. Fungal Biol. Rev., 23(4), 138–144.
Saleque, M. A., & Kirk, G. J. (1995). Root-induced solubilization of phosphate in the rhizosphere of lowland rice. New Phytol., 129, 325–336.
Schnepf, A., & Roose, T. (2006). Modelling the contribution of arbuscular mycorrhizal fungi to plant phosphate uptake. New Phytol., 171, 669–682.
Schnepf, A., Roose, T., & Schweiger, P. (2008). Impact of growth and uptake patterns of arbuscular mycorrhizal fungi on plant phosphorus uptake—a modelling study. Plant Soil, 312, 85–99.
Schweiger, P., & Jakobsen, I. (1999). The role of mycorrhizas in plant P nutrition: Fungal uptake kinetics and genotype variation. In G. Gissel-Nielsen, A. Jensen (Eds.), Plant nutrition—molecular biology and genetics (pp. 277–289). Dordrecht: Kluwer Academic.
Schweiger, P., & Jakobsen, I. (2000). Laboratory and field methods for measurement of hyphal uptake of nutrients in soil. Plant Soil, 226, 237–244.
Sharma, A. K., Srivastava, P. C., & Johri, B. N. (1999). Multiphasic zinc uptake system in mycorrhizal and nonmycorrhizal roots of French bean (Phaseolus vulgaris L.). Curr. Sci., 76, 228–230.
Smith, S. E., Smith, F. A., & Jakobsen, I. (2003). Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol., 130, 16–20.
Staddon, P. L., Ramsey, C. B., Ostle, N., Ineson, P., & Fitter, A. H. (2003). Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C. Science, 300, 1138–1140.
Tinker, P. B., & Nye, P. H. (2000). Solute movement in the rhizosphere. London: Oxford University Press.
Van Breemen, N., Finlay, R., Lundström, U., Jongmans, A. G., Giesler, R., & Olsson, M. (2000). Mycorrhizal weathering: a true case of mineral plant nutrition? Biogeochemistry, 49, 53–67.
Zheng, T., Liang, Y. H., Ye, S. H., & He, Z. Y. (2009). Superabsorbent hydrogels as carriers for the controlled-release of urea: experiments and a mathematical model describing the release rate. Biosyst. Eng., 102, 44–50.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Schnepf, A., Jones, D. & Roose, T. Modelling Nutrient Uptake by Individual Hyphae of Arbuscular Mycorrhizal Fungi: Temporal and Spatial Scales for an Experimental Design. Bull Math Biol 73, 2175–2200 (2011). https://doi.org/10.1007/s11538-010-9617-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11538-010-9617-1
Keywords
- Experimental design
- Fungal nutrient uptake
- Mineral weathering
- Mycorhizosphere
- Phosphorus cycling
- Simulation model