Japanese Journal of Mathematics

, Volume 10, Issue 2, pp 237–248 | Cite as

From Pierre Deligne’s secret garden: looking back at some of his letters

Original Article

Abstract

I discuss four unpublished letters of Deligne (one on Hodge theory, two on Euler–Poincaré characteristics and ramification of \({\ell}\)-adic sheaves, one on generalized divisors), and sketch some of the developments they generated.

Keywords and phrases

mixed Hodge theory \({\ell}\)-adic sheaf ramification Swan conductor Euler–Poincaré characteristic characteristic cycle logarithmic structure 

Mathematics Subject Classification (2010)

32S35 14F20 11S15 14C20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbes A., Saito T.: Ramification of local fields with imperfect residue fields. Amer. J. Math., 124, 879–920 (2001)MathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Abbes and T. Saito, Ramification of local fields with imperfect residue fields. II, Doc. Math., Extra Vol.: Kazuya Kato’s Fiftieth Birthday (2003), 5–72.Google Scholar
  3. 3.
    A. Abbes and T. Saito, The characteristic class and ramification of an \({\ell}\)-adic étale sheaf, Invent. Math., 168 (2007), 567–612.Google Scholar
  4. 4.
    A. Abbes and T. Saito, Ramification and cleanliness, Tohoku Math. J. (2), Centennial Issue, 63 (2011), 775–853.Google Scholar
  5. 5.
    Beilinson A.: p-adic periods and de Rham cohomology. J. Amer. Math. Soc., 25, 715–738 (2012)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    A. Beilinson, Constructible sheaves are holonomic, preprint, arXiv:1505.06768.
  7. 7.
    S. Bloch, Cycles on arithmetic schemes and Euler characteristics of curves, In: Algebraic Geometry, Bowdoin, 1985, Proc. Sympos. Pure Math., 46, Part 2, Amer. Math. Soc., Providence, RI, 1987, pp. 421–450.Google Scholar
  8. 8.
    J.-L. Brylinski, Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques, In: Géométrie et analyse microlocales, Astérisque, 140-141, Soc. Math. France, Paris, 1986, pp. 3–134, 251.Google Scholar
  9. 9.
    Brylinski J.-L., Dubson A.S., Kashiwara M.: Formule de l’indice pour modules holonomes et obstruction d’Euler locale. C. R. Acad. Sci. Paris Sér. I Math., 293, 573–576 (1981)MathSciNetMATHGoogle Scholar
  10. 10.
    P. Deligne, Cohomologie Etale, Séminaire de Géométrie Algébrique du Bois-Marie, Lecture Notes in Math., 569, SGA 4 1/2, Springer-Verlag, 1977.Google Scholar
  11. 11.
    P. Deligne, Notes sur Euler–Poincaré: brouillon project, handwritten notes, Feb. 8, 2011.Google Scholar
  12. 12.
    P. Deligne and L. Illusie, Relèvements modulo p 2 et décomposition du complexe de de Rham, Invent. Math., 89 (1987), 247–270.Google Scholar
  13. 13.
    P. Deligne and N. Katz, Groupes de monodromie en géométrie algébrique, Lecture Notes in Math., 340, SGA 7 II, Springer-Verlag, 1973.Google Scholar
  14. 14.
    Du Bois P.: Complexe de de Rham filtré d’une variété singulière. Bull. Soc. Math. France, 109, 41–81 (1981)MathSciNetMATHGoogle Scholar
  15. 15.
    G. Faltings, F-isocrystals on open varieties: results and conjectures, In: The Grothendieck Festschrift. Vol. II, Progr. Math., 87, Birkhäuser Boston, MA, 1990, pp. 219–248.Google Scholar
  16. 16.
    J.-M. Fontaine, Périodes p-Adiques, Séminaire de Bures, 1988, Astérisque, 223, Soc. Math. France, Paris, 1994.Google Scholar
  17. 17.
    A. Grothendieck, Cohomologie \({\ell}\)-adique et Fonctions L, Séminaire de Géométrie Algébrique du Bois-Marie 1965–66, Lecture Notes in Math., 589, SGA 5, Springer-Verlag, 1977.Google Scholar
  18. 18.
    L. Illusie, Théorie de Brauer et caractéristique d’Euler–Poincaré (d’après P. Deligne), In: Caractéristique d’Euler–Poincaré, Séminaire ENS, 1978–1979, Astérisque, 82-83, Soc. Math. France, Paris, 1981, pp. 161–172.Google Scholar
  19. 19.
    L. Illusie and W. Zheng, Odds and ends on finite group actions and traces, Int. Math. Res. Not. IMRN, 2013, 1–62; Errata and addenda, Int. Math. Res. Not. IMRN, 2014, 2572–2576.Google Scholar
  20. 20.
    K. Kato, Swan conductors with differential values, In: Galois Representations and Arithmetic Algebraic Geometry, Adv. Stud. Pure Math., 12, North-Holland, Amsterdam, 1987, pp. 315–342.Google Scholar
  21. 21.
    K. Kato, Logarithmic structures of Fontaine–Illusie, In: Algebraic Analysis, Geometry, and Number Theory, Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 191–224.Google Scholar
  22. 22.
    K. Kato, Class field theory, \({\mathcal{D}}\)-modules, and ramification on higher-dimensional schemes. I, Amer. J. Math., 116 (1994), 757–784.Google Scholar
  23. 23.
    Kato K., Saito T.: On the conductor formula of Bloch. Publ. Math. Inst. Hautes études Sci., 100, 5–151 (2004)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Kato K., Saito T.: Ramification theory for varieties over a perfect field. Ann. of Math. (2) 168, 33–96 (2008)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Kato K., Saito T.: Ramification theory for varieties over a local field. Publ. Math. Inst. Hautes études Sci., 117, 1–178 (2013)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    G. Laumon, Semi-continuité du conducteur de Swan (d’après P. Deligne), In: Caractéristique d’Euler–Poincaré, Séminaire ENS, 1978–1979, Astérisque, 82-83, Soc. Math. France, Paris, 1981, pp. 173–219.Google Scholar
  27. 27.
    G. Laumon, Comparaison de caractéristiques d’Euler–Poincaré en cohomologie \({\ell}\)-adique, C. R. Acad. Sci. Paris Sér. I Math., 292 (1981), 209–212.Google Scholar
  28. 28.
    G. Laumon, Caractéristique d’Euler–Poincaré de faisceaux constructibles sur une surface, In: Analyse et topologie sur les espaces singuliers. II, III, Astérisque, 101-102, Soc. Math. France, Paris, 1983, pp. 193–207.Google Scholar
  29. 29.
    G. Laumon, Compléments à “Caractéristique d’Euler–Poincaré de faisceaux constructibles sur une surface", thèse, Orsay, 1983.Google Scholar
  30. 30.
    MacPherson R.D.: Chern classes for singular algebraic varieties. Ann. of Math. (2) 100, 423–432 (1974)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Olsson M.C.: Logarithmic geometry and algebraic stacks. Ann. Sci. école Norm. Sup. (4) 36, 747–791 (2003)MathSciNetMATHGoogle Scholar
  32. 32.
    Olsson M.C.: The logarithmic cotangent complex. Math. Ann., 333, 859–931 (2005)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Saito S.: General fixed point formula for an algebraic surface and the theory of Swan representations for two-dimensional local rings. Amer. J. Math., 109, 1009–1042 (1987)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    T. Saito, Wild ramification and the characteristic cycle of an \({\ell}\)-adic sheaf, J. Inst. Math. Jussieu, 8 (2009), 769–829.Google Scholar
  35. 35.
    Saito T.: Ramification of local fields with imperfect residue fields III. Math. Ann., 352, 567–580 (2012)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    T. Saito, Wild ramification and the cotangent bundle, preprint, arXiv:1301.4632v5.
  37. 37.
    Saito T.: Characteristic cycle and the Euler number of a constructible sheaf on a surface. J. Math. Sci. Univ. Tokyo, 22, 387–442 (2015)MathSciNetGoogle Scholar
  38. 38.
    T. Saito, The characteristic cycle and the singular support of an étale sheaf, talk at Arithmetic Geometry, Representation Theory and Applications, CIRM, Luminy, June 24, 2015.Google Scholar
  39. 39.
    Schwede K.: A simple characterization of Du Bois singularities. Compos. Math., 143, 813–828 (2007)MathSciNetMATHGoogle Scholar
  40. 40.
    Serre J.-P.: Sur la rationalité des représentations d’Artin. Ann. of Math. (2) 72, 405–420 (1960)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Vidal I.: Théorie de Brauer et conducteur de Swan. J. Algebraic Geom., 13, 349–391 (2004)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Vidal I.: Courbes nodales et ramification sauvage virtuelle. Manuscripta Math., 118, 43–70 (2005)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Mathematical Society of Japan and Springer Japan 2015

Authors and Affiliations

  1. 1.Département de Mathématiques, Bâtiment 425, Faculté des Sciences d’OrsayUniversité Paris Sud 11Orsay CedexFrance

Personalised recommendations