Skip to main content
Log in

Exploring the Impact of Extended Reality (XR) on Spatial Reasoning of Elementary Students

  • Original Paper
  • Published:
TechTrends Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate how the consumption and production of extended reality (XR) video content impacted elementary student spatial reasoning skills. Third- and fourth-grade elementary students (aged 8 to 11) were given a four-week intervention in which they first consumed virtual reality (VR) video for two weeks. During the third week, they created their own videos using 360-degree video cameras. In the final week, the students were given the opportunity to watch the videos they created using VR headsets. Students were given a spatial reasoning pre-test and post-test to measure the change in spatial reasoning ability over the four weeks. The results indicated that the consumption and production of XR video led to an improvement in overall spatial reasoning ability of elementary students learning science. This study contributes to the growing body of literature supporting the positive effects of the use of XR in the classroom and opens the door to further opportunities to analyze how student production of 360-degree videos and related VR can lead to positive learning outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avery, B., Sandor, C., & Thomas, B. H. (2009). Improving spatial perception for augmented reality X-Ray vision. IEEE Virtual Reality Conference, 2009, 79–82. https://doi.org/10.1109/VR.2009.4811002

    Article  Google Scholar 

  • Battista, M. (1981). The interaction between two instructional treatments of algebraic structures and spatial-visualization ability. The Journal of Educational Research, 74(5), 337–341. https://doi.org/10.1080/00220671.1981.10885326

    Article  Google Scholar 

  • Bertrand, P., Guegan, J., Robieux, L., McCall, C. A., & Zenasni, F. (2018). Learning empathy through virtual reality: Multiple strategies for training empathy-related abilities using body ownership illusions in embodied virtual reality. Frontiers in Robotics and AI, 5, 26. https://doi.org/10.3389/frobt.2018.00026

    Article  Google Scholar 

  • Brown, A., & Green, T. (2016). Virtual reality: Low-cost tools and resources for the classroom. TechTrends, 60(5), 517–519. https://doi.org/10.1007/s11528-016-0102-z

    Article  Google Scholar 

  • Bruce, C. D., & Hawes, Z. (2015). The role of 2D and 3D mental rotation in mathematics for young children: What is it? Why does it matter? And what can we do about it? ZDM Mathematics Education, 47(3), 331–343. https://doi.org/10.1007/s11858-014-0637-4

    Article  Google Scholar 

  • Carr, M., Alexeev, N., Wang, L., Barned, N., Horan, E., & Reed, A. (2018). The development of spatial skills in elementary school students. Child Development, 89(2), 446–460. https://doi.org/10.1111/cdev.12753

    Article  Google Scholar 

  • Carroll, J. B. (1993). Human Cognitive Abilities a survey of factor-analytic studies. Cambridge University Press. https://doi.org/10.1017/CBO9780511571312

  • Chen, C. H., Yang, J. C., Shen, S., & Jeng, M. C. (2007). A desktop virtual reality earth motion system in astronomy education. Journal of Educational Technology & Society, 10(3), 289–304. JSTOR.

    Google Scholar 

  • Cheng, Y.-L., & Mix, K. S. (2014). Spatial Training Improves Children’s Mathematics Ability. Journal of Cognition and Development, 15(1), 2–11. https://doi.org/10.1080/15248372.2012.725186

    Article  Google Scholar 

  • Chiang, T. H. C., Yang, S. J. H., & Hwang, G.-J. (2014). An augmented reality-based mobile learning system to improve students’ learning achievements and motivations in natural science inquiry activities. Journal of Educational Technology & Society, 17(4), 352–365. JSTOR.

    Google Scholar 

  • Choi, K., Yoon, Y.-J., Song, O.-Y., & Choi, S.-M. (2018). Interactive and immersive learning using 360° virtual reality contents on mobile platforms. Mobile Information Systems, 2018, 1–12. https://doi.org/10.1155/2018/2306031

    Article  Google Scholar 

  • Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In Handbook of research on mathematics teaching and learning. Macmillan, New York, NY (1992), pp. 420–464.

  • Clements, D. H. (1998). Geometric and spatial thinking in young children. National Council of Teachers of Mathematics. Retrieved 2 February 2020 from https://eric.ed.gov/?id=ED436232

  • Cliffe, A. D. (2017). A review of the benefits and drawbacks to virtual field guides in today’s Geoscience higher education environment. International Journal of Educational Technology in Higher Education, 14(1), 28. https://doi.org/10.1186/s41239-017-0066-x

    Article  Google Scholar 

  • Common Core Standards Initiative. (2021). Mathematics Standards | Common Core State Standards Initiative. Retrieved 10 October 2021 from http://www.corestandards.org/wp-content/uploads/Math_Standards1.pdf

  • Cortina, J. M. (1993). What is coefficient Alpha? An examination of theory and applications. Journal of Applied Psychology, 78(1), 98–104.

    Article  Google Scholar 

  • Curcio, I. D. D., Dipace, A., & Norlund, A. (2016). Virtual realities and education. Research on Education and Media, 8(2), 60–68. https://doi.org/10.1515/rem-2016-0019

  • David, L. T. (2012). Training effects on mental rotation, spatial orientation and spatial visualisation depending on the initial level of spatial abilities. Procedia - Social and Behavioral Sciences, 33, 328–332. https://doi.org/10.1016/j.sbspro.2012.01.137

    Article  Google Scholar 

  • Dede, C. (2009). Immersive Interfaces for Engagement and Learning. Science, 323(5910), 66–69. JSTOR.

    Article  Google Scholar 

  • Dede, C. J., Jacobson, J., & Richards, J. (2017). Introduction: Virtual, augmented, and mixed realities in education. In D. Liu, C. Dede, R. Huang, & J. Richards (Eds.), Virtual, augmented, and mixed realities in education (pp. 1–16). Springer. https://doi.org/10.1007/978-981-10-5490-7_1

    Chapter  Google Scholar 

  • Dolgunsoz, E., Yildirim, G., & Yildirim, S. (2018). The effect of virtual reality on EFT writing performance. Journal of Language and Linguistic Studies, 14, 278–292.

    Google Scholar 

  • Dünser, A., Steinbügl, K., Kaufmann, H., & Glück, J. (2006). Virtual and augmented reality as spatial ability training tools. Proceedings of the 6th ACM SIGCHI New Zealand Chapter’s International Conference on Computer-Human Interaction Design Centered HCI - CHINZ ’06, 125–132. https://doi.org/10.1145/1152760.1152776

  • DrashVR LLC. (2017). Titans of Space [Video game]. Oculus.

  • Ehrlich, S. B., Levine, S. C., & Goldin-Meadow, S. (2006). The importance of gesture in children’s spatial reasoning. Developmental Psychology, 42(6), 1259–1268. https://doi.org/10.1037/0012-1649.42.6.1259

    Article  Google Scholar 

  • Ferdig, R. E., & Kosko, K. W. (2020). Implementing 360 video to increase immersion, perceptual capacity, and teacher noticing. TechTrends, 64, 849–859.

    Article  Google Scholar 

  • Feurstein, M. S. (2018). Towards an Integration of 360-degree Video in Higher Education. Proceedings of the DeLFI Workshops, 2018 co-located with 16th e-Learning Conference of the German Computer Society (DeLFI 2018), Frankfurt, Germany

  • Figueiredo, M., Mafalda, R., & Kamensky, A. (2021). Virtual reality as an educational tool for elementary school. In L. Pereira, J. R. H. Carvalho, P. Krus, M. Klofsten, & V. J. De Negri (Eds.), Proceedings of IDEAS 2019 (pp. 261–267). Springer International Publishing. https://doi.org/10.1007/978-3-030-55374-6_26

    Chapter  Google Scholar 

  • Fleck, S., & Simon, G. (2013). An augmented reality environment for astronomy learning in elementary grades: An exploratory study. Proceedings of the 25th Conference on L’Interaction Homme-Machine, 14(14–14), 22. https://doi.org/10.1145/2534903.2534907

    Article  Google Scholar 

  • Fujita, T., Kondo, Y., Kumakura, H., Kunimune, S., & Jones, K. (2020). Spatial reasoning skills about 2D representations of 3D geometrical shapes in grades 4 to 9. Mathematics Education Research Journal, 32(2), 235–255. https://doi.org/10.1007/s13394-020-00335-w

    Article  Google Scholar 

  • Gagnier, K., & Fisher, K. (2016). Spatial Thinking: A missing building block in STEM education. John Hopkins Institute for Educational Policy. Retrieved from http://edpolicy.education.jhu.edu/spatial-thinking-a-missing-building-block-in-stem-education/

  • Gandolfi, E., Kosko, K. W., & Ferdig, R. E. (2021). Situating presence within extended reality for teacher training: Validation of the eXtended Reality Presence Scale (XRPS) in preservice teacher use of immersive 360 video. British Journal of Educational Technology, 52(2), 824–841. https://doi.org/10.1111/bjet.13058

    Article  Google Scholar 

  • Gent, E. (2016). Are Virtual Reality Headsets Safe for Kids? Live Science. Retrieved 15 November 2019 from https://www.livescience.com/56346-are-virtual-reality-headsets-safe-for-kids.html

  • Gribble, W., Browning, R., Hewett, M., Remolina, E., and Kuipers, B. 1998. Integrating vision and spatial reasoning for assistive navigation. In Assistive Technology and Artificial Intelligence, V. Mittal, H. Yanco, J. Aronis, and R. Simpson (Eds.), Springer Verlag: Berlin, Germany, pp. 179–193.

  • Harrington, C. M., Kavanagh, D. O., Wright Ballester, G., Wright Ballester, A., Dicker, P., Traynor, O., Hill, A., & Tierney, S. (2018). 360° operative videos: A randomised cross-over study evaluating attentiveness and information retention. Journal of Surgical Education, 75(4), 993–1000. https://doi.org/10.1016/j.jsurg.2017.10.010

    Article  Google Scholar 

  • Henry, D., & Furness, T. (1993). Spatial perception in virtual environments: Evaluating an architectural application. Proceedings of IEEE Virtual Reality Annual International Symposium, 33–40. https://doi.org/10.1109/VRAIS.1993.380801

  • Huang, H.-M., Rauch, U., & Liaw, S.-S. (2010). Investigating learners’ attitudes toward virtual reality learning environments: Based on a constructivist approach. Computers & Education, 55(3), 1171–1182. https://doi.org/10.1016/j.compedu.2010.05.014

    Article  Google Scholar 

  • Huk, T. (2006). Who benefits from learning with 3D models? The case of spatial ability. Journal of Computer Assisted Learning, 22(6), 392–404. https://doi.org/10.1111/j.1365-2729.2006.00180.x

    Article  Google Scholar 

  • Johnson, C. D. L. (2018). Using virtual reality and 360-degree video in the religious studies classroom: An experiment. Teaching Theology & Religion, 21(3), 228–241. https://doi.org/10.1111/teth.12446

    Article  Google Scholar 

  • Jolicoeur, P., Regehr, S., Smith, L., & Smith, G. N. (1985). Mental rotation of representations of two-dimensional and three-dimensional objects. Canadian Journal of Psychology, 39, 100–129.

    Article  Google Scholar 

  • Klein, P. S., Adi-Japha, E., & Hakak-Benizri, S. (2010). Mathematical thinking of kindergarten boys and girls: Similar achievement, different contributing processes. Educational Studies in Mathematics, 73(3), 233–246. https://doi.org/10.1007/s10649-009-9216-y

    Article  Google Scholar 

  • Kosko, K. W., Ferdig, R. E., & Roche, L. (2021a). Conceptualizing a Shared Definition and Future Directions for Extended Reality (XR) in Teacher Education. Journal of Technology and Teacher Education, 29(3), 257–277.

    Google Scholar 

  • Kosko, K. W., Ferdig, R. E., & Zolfaghari, M. (2021b). Preservice teachers’ professional noticing when viewing standard and 360 video. Journal of Teacher Education, 72(3), 284–297. https://doi.org/10.1177/0022487120939544

    Article  Google Scholar 

  • Kuder, G. F., & Richardson, M. W. (1937). The theory of the estimation of test reliability. Psychometrika, 2(3), 151–160.

    Article  Google Scholar 

  • Kundu, S. N. (2016). Designing an effective Virtual Field trip for e-Learning. 2016 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE), 9–13. https://doi.org/10.1109/TALE.2016.7851762

  • Kurtuluş, A. (2013). The effects of web-based interactive virtual tours on the development of prospective mathematics teachers’ spatial skills. Computers & Education, 63, 141–150. https://doi.org/10.1016/j.compedu.2012.11.009

    Article  Google Scholar 

  • Lachance, J. A., & Mazzocco, M. M. M. (2006). A longitudinal analysis of sex differences in math and spatial skills in primary school age children. Learning and Individual Differences, 16(3), 195–216. https://doi.org/10.1016/j.lindif.2005.12.001

    Article  Google Scholar 

  • Lee, S. H., Sergueeva, K., Catangui, M., & Kandaurova, M. (2017). Assessing Google Cardboard virtual reality as a content delivery system in business classrooms. Journal of Education for Business, 92(4), 153–160.

    Article  Google Scholar 

  • Legault, J., Zhao, J., Chi, Y.-A., Chen, W., Klippel, A., & Li, P. (2019). Immersive virtual reality as an effective tool for second language vocabulary learning. Languages, 4(1), 13. https://doi.org/10.3390/languages4010013

    Article  Google Scholar 

  • Linn, M. C., & Peterson, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56, 1479–1498.

    Article  Google Scholar 

  • Lowrie, T., & Jorgensen, R. (2018). Equity and spatial reasoning: Reducing the mathematical achievement gap in gender and social disadvantage. Mathematics Education Research Journal, 30(1), 65–75.

    Article  Google Scholar 

  • Lowrie, T., & Logan, T. (2018). The interaction between spatial reasoning constructs and mathematics understandings in elementary classrooms. In K. S. Mix & M. T. Battista (Eds.), Visualizing mathematics (pp. 253–276). Springer International Publishing. https://doi.org/10.1007/978-3-319-98767-5_12

    Chapter  Google Scholar 

  • Lowrie, T., Logan, T., & Ramful, A. (2017). Visuospatial training improves elementary students’ mathematics performance. British Journal of Educational Psychology, 87(2), 170–186. https://doi.org/10.1111/bjep.12142

    Article  Google Scholar 

  • Lowrie, T., Logan, T., Harris, D., & Hegarty, M. (2018). The impact of an intervention program on students’ spatial reasoning: Student engagement through mathematics-enhanced learning activities. Cognitive Research: Principles and Implications, 3, 50. https://doi.org/10.1186/s41235-018-0147-y

    Article  Google Scholar 

  • Lowrie, T., Resnick, I., Harris, D., & Logan, T. (2020). In search of the mechanisms that enable transfer from spatial reasoning to mathematics understanding. Mathematics Education Research Journal, 32(2), 175–188. https://doi.org/10.1007/s13394-020-00336-9

    Article  Google Scholar 

  • Lowrie, T. (2002). The influence of visual and spatial reasoning in interpreting simulated 3D worlds. International Journal of Computers for Mathematical Learning, 7, 301–318.

    Article  Google Scholar 

  • Lumby, J. (2011). Enjoyment and learning: Policy and secondary school learners’ experience in England. British Educational Research Journal, 37(2), 247–264. https://doi.org/10.1080/01411920903540680

    Article  Google Scholar 

  • Markey, S. M. (2010). The relationship between visual-spatial reasoning ability and math and geometry problem-solving. Dissertation Abstracts International: Section B. The Sciences and Engineering, 59, 724

  • Martín-Gutiérrez, J. (2017). Virtual technologies trends in education. EURASIA Journal of Mathematics, Science and Technology Education, 13(1), 469–486. https://doi.org/10.12973/eurasia.2017.00626a

    Article  Google Scholar 

  • Mazzocco, M. M. M., & Myers, G. F. (2003). Complexities in identifying and defining mathematics learning disability in the primary school-age years. Annals of Dyslexia, 53(1), 218–253. https://doi.org/10.1007/s11881-003-0011-7

    Article  Google Scholar 

  • MATTERvr (2017). Wonders of the World [Video game]. Oculus.

  • Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1995). Augmented reality: A class of displays on the reality-virtuality continuum. Telemanipulator and Telepresence Technologies, 2351, 282–292. https://doi.org/10.1117/12.197321

    Article  Google Scholar 

  • Mulligan, J., Woolcott, G., Mitchelmore, M., & Davis, B. (2018). Connecting mathematics learning through spatial reasoning. Mathematics Education Research Journal, 30(1), 77–87. https://doi.org/10.1007/s13394-017-0210-x

    Article  Google Scholar 

  • Newcombe, N., & Frick, A. (2010). Early education for spatial intelligence: Why, What, and How. Mind, Brain, and Education, 4(3), 102–111. https://doi.org/10.1111/j.1751-228X.2010.01089.x

    Article  Google Scholar 

  • Newcombe, N. S. (2010). Picture this: Increasing math and science learning by improving spatial thinking. American Educator, 34(2), 29–35.

    Google Scholar 

  • Newcombe, N. S. (2013). Seeing relationships: Using spatial thinking to teach science, mathematics, and social studies. American Educator, 37(1), 26–31.

    Google Scholar 

  • NGSS Lead State. (2013). Next generation science standards: For States. The National Academies Press.

    Google Scholar 

  • Paes, D., Arantes, E., & Irizarry, J. (2017). Immersive environment for improving the understanding of architectural 3D models: Comparing user spatial perception between immersive and traditional virtual reality systems. Automation in Construction, 84, 292–303. https://doi.org/10.1016/j.autcon.2017.09.016

    Article  Google Scholar 

  • Pan, Z., Cheok, A. D., Yang, H., Zhu, J., & Shi, J. (2006). Virtual reality and mixed reality for virtual learning environments. Computers & Graphics, 30(1), 20–28. https://doi.org/10.1016/j.cag.2005.10.004

    Article  Google Scholar 

  • Panchuk, D., Klusemann, M. J., & Hadlow, S. M. (2018). Exploring the effectiveness of immersive video for training decision-making capability in elite, youth basketball players. Frontiers in Psychology, 9, 1–9.

    Article  Google Scholar 

  • Pantelidis, V. S. (1995). Reasons to use virtual reality in the classroom. VR in the Schools, 1(1), 9.

    Google Scholar 

  • Pantelidis, V. S. (2010). Reasons to Use virtual reality in education and training courses and a model to determine when to use virtual reality. Themes in Science and Technology Education, 2(1–2), 59–70.

    Google Scholar 

  • Parsons, T. D., Larson, P., Kratz, K., Thiebaux, M., Bluestein, B., Buckwalter, J. G., & Rizzo, A. A. (2004). Sex differences in mental rotation and spatial rotation in a virtual environment. Neuropsychologia, 42(4), 555–562. https://doi.org/10.1016/j.neuropsychologia.2003.08.014

    Article  Google Scholar 

  • Parsons, T. D., Courtney, C. G., Dawson, M. E., Rizzo, A. A., & Arizmendi, B. J. (2013). Visuospatial processing and learning effects in virtual reality based mental rotation and navigational tasks. In D. Harris (Ed.), Engineering psychology and cognitive ergonomics. Understanding human cognition (Vol. 8019, pp. 75–83). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-39360-0_9

    Chapter  Google Scholar 

  • Passig, D., & Eden, S. (2001). Virtual reality as a tool for improving spatial rotation among deaf and hard-of-hearing children. CyberPsychology & Behavior, 4(6), 681–686. https://doi.org/10.1089/109493101753376623

    Article  Google Scholar 

  • Pulijala, Y., Ma, M., Pears, M., Peebles, D., & Ayoub, A. (2018). An innovative virtual reality training tool for orthognathic surgery. International Journal of Oral and Maxillofacial Surgery, 47(9), 1199–1205. https://doi.org/10.1016/j.ijom.2018.01.005

    Article  Google Scholar 

  • Rafi, A., Anuar, K., Samad, A., Hayati, M., & Mahadzir, M. (2005). Improving spatial ability using a Web-based Virtual Environment (WbVE). Automation in Construction, 14(6), 707–715. https://doi.org/10.1016/j.autcon.2004.12.003

    Article  Google Scholar 

  • Rafi, A., Samsudin, K. A., & Said, C. S. (2008). Training in spatial visualization: The effects of training method and gender. Educational Technology & Society, 11, 127–140.

    Google Scholar 

  • Ramful A, Lowrie T, Logan T. (2017). Measurement of Spatial Ability: Construction and Validation of the Spatial Reasoning Instrument for Middle School Students. Journal of Psychoeducational Assessment, 35(7), 709–727. https://doi.org/10.1177/0734282916659207

  • Rich, K., & Brendefur, J. L. (2018). The importance of spatial reasoning in early childhood mathematics. Early Childhood Education. https://doi.org/10.5772/intechopen.81564

    Article  Google Scholar 

  • Rupp, M. A., Odette, K. L., Kozachuk, J., Michaelis, J. R., Smither, J. A., & McConnell, D. S. (2019). Investigating learning outcomes and subjective experiences in 360-degree videos. Computers & Education, 128, 256–268. https://doi.org/10.1016/j.compedu.2018.09.015

    Article  Google Scholar 

  • Selwyn, N., Nemorin, S., Bulfin, S., & Johnson, N. F. (2017). Left to their own devices: The everyday realities of one-to-one classrooms. Oxford Review of Education, 43(3), 289–310. https://doi.org/10.1080/03054985.2017.1305047

    Article  Google Scholar 

  • Shea, D. L., Lubinski, D., & Benbow, C. P. (2001). Importance of assessing spatial ability in intellectually talented young adolescents: A 20-year longitudinal study. Journal of Educational Psychology, 93, 11.

    Article  Google Scholar 

  • Shepard, R., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701–703.

    Article  Google Scholar 

  • Sinclair, N., & Bruce (coordinators), C. D. (2014). Research forum: spatial reasoning for young learners. In P. Liljedahl, C. Nicol, S. Oesterle, & D. Allan (Eds.), Proceedings of the joint meeting of PME 38 and PME-NA 36 (Vol. 1, pp. 173–203). Vancouver: PME.

  • Snelson, C., & Hsu, Y.-C. (2019). Educational 360-Degree Videos in Virtual Reality: A Scoping Review of the Emerging Research. TechTrends, 64, 404–412. https://doi.org/10.1007/s11528-019-00474-3

  • Stoddard, J. (2009). Toward a virtual field trip model for the social studies. Contemporary Issues in Technology and Teacher Education, 9(4), 412–438.

    Google Scholar 

  • Sun, K.-T., Lin, C.-L., & Wang, S.-M. (2010). A 3-D virtual reality model of the sun and the moon for e-Learning at elementary schools. International Journal of Science and Mathematics Education, 8(4), 689–710. https://doi.org/10.1007/s10763-009-9181-z

    Article  Google Scholar 

  • Sutton, K. J., & Williams, A. P. (2007). Spatial cognition and its implications for design. Hong Kong: International Association of Societies of Design Research, 16.

  • Trindade, J., Fiolhais, C., & Almeida, L. (2002). Science learning in virtual environments: A descriptive study. British Journal of Educational Technology, 33(4), 471–488. https://doi.org/10.1111/1467-8535.00283

    Article  Google Scholar 

  • Tsutsumi, E., Shiina, K., Suzaki, A., Yamanouchi, K., Saito, T., & Suzuki, K. (1999). A mental cutting test on female students using a stereographic system. Journal for Geometry and Graphics, 3, 111–119.

  • Tuker, C. (2018). Training spatial skills with virtual reality and augmented reality. In N. Lee (Ed.), Encyclopedia of computer graphics and games (pp. 1–9). Springer International Publishing. https://doi.org/10.1007/978-3-319-08234-9_173-1

    Chapter  Google Scholar 

  • Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352–402. https://doi.org/10.1037/a0028446

    Article  Google Scholar 

  • Uttal, D. H., & Cohen, C. A. (2012). Spatial Thinking and STEM Education. When, Why, and How? Psychology of Learning and Motivation - Advances in Research and Theory, 57, 147–181. https://doi.org/10.1016/B978-0-12-394293-7.00004-2

    Article  Google Scholar 

  • Vesisenaho, M., Juntunen, M., Häkkinen, P., Pöysä-Tarhonen, J., Fagerlund, J., Miakush, I., & Parviainen, T. (2019). Virtual Reality in Education: Focus on the Role of Emotions and Physiological Reactivity. Journal For Virtual Worlds Research, 12(1). https://doi.org/10.4101/jvwr.v12i1.7329

  • Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817–835. https://doi.org/10.1037/a0016127

    Article  Google Scholar 

  • Wai, J., & Uttal, D. H. (2018). Why spatial reasoning matters for education policy. American Enterprise Institute. Retrieved 10 November 2021 from https://www.aei.org/research-products/report/why-spatial-reasoning-matters-for-education-policy/

  • Walshe, N., & Driver, P. (2019). Developing reflective trainee teacher practice with 360-degree video. Teaching and Teacher Education, 78, 97–105. https://doi.org/10.1016/j.tate.2018.11.009

    Article  Google Scholar 

  • Yakimanskaya, I. S. (1999). The development of spatial thinking in schoolchildren. In P. S. Wilson & E. J. Davis (Eds.), Soviet studies in mathematics education (vol. 4). Reston VA: National Council of Teachers of Mathematics.

  • Yeh, Y.-L., Lan, Y.-J., & Lin, Y.-T.R. (2018). Gender-related differences in collaborative learning in a 3D virtual reality environment by elementary school students. Journal of Educational Technology & Society, 21(4), 204.

    Google Scholar 

  • Yilmaz, H. B. (2009). On the Development and Measurement of Spatial Ability. International Electronic Journal of Elementary Education, 1(2), 83–96.

  • Yoganathan, S., Finch, D. A., Parkin, E., & Pollard, J. (2018). 360° virtual reality video for the acquisition of knot tying skills: A randomised controlled trial. International Journal of Surgery, 54, 24–27. https://doi.org/10.1016/j.ijsu.2018.04.002

    Article  Google Scholar 

  • Youngblut, C. (1998). Educational Uses of Virtual Reality Technology. Technical Report No. IDA Document D-2128, Institute for Defense Analyses.

  • Zhang, X., Koponen, T., Räsänen, P., Aunola, K., Lerkkanen, M.-K., & Nurmi, J.-E. (2014). Linguistic and spatial skills predict early arithmetic development via counting sequence knowledge. Child Development, 85(3), 1091–1107. https://doi.org/10.1111/cdev.12173

    Article  Google Scholar 

  • Zobel, B., Werning, S., Berkemeier, L., & Thomas, O. (2018). Augmented- und Virtual-Reality-Technologien zur Digitalisierung der Aus- und Weiterbildung – Überblick, Klassifikation und Vergleich. In O. Thomas, D. Metzger, & H. Niegemann (Eds.), Digitalisierung in der Aus- und Weiterbildung: Virtual und Augmented Reality für Industrie 4.0 (pp. 20–34). Springer. https://doi.org/10.1007/978-3-662-56551-3_2

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily Baumgartner.

Ethics declarations

Declarations

This study received Institutional Review Board (IRB) approval for research involving human participants from Kent State University. Additionally, all students involved in this study had a signed parental consent form.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baumgartner, E., Ferdig, R.E. & Gandolfi, E. Exploring the Impact of Extended Reality (XR) on Spatial Reasoning of Elementary Students. TechTrends 66, 825–836 (2022). https://doi.org/10.1007/s11528-022-00753-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11528-022-00753-6

Keywords

Navigation