Skip to main content
Log in

Dual PI3K/HDAC Inhibitor BEBT-908 Exhibits Potent Efficacy as Monotherapy for Primary Central Nervous System Lymphoma

  • Original Research Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Background

The efficacy of systemic treatment for primary central nervous system lymphoma (PCNSL) is limited because of the blood–brain barrier (BBB) and the ineffectiveness of chemotherapy. The dual PI3K/HDAC inhibitor BEBT-908 has exhibited favorable in vivo distribution and activity in various cancers.

Objectives

The aims of this study were to assess the efficacy of BEBT-908 in brain orthotopic mouse models of hematological malignancies, to investigate its pharmacologic properties, and to elucidate the underlying mechanism of action.

Methods

We evaluated the anticancer activity of BEBT-908 in various hematological malignancies through cell viability assays. The impact of BEBT-908 on c-Myc expression and ferroptosis signaling pathways was assessed using Western blotting, qPCR, ROS detection, GSH/GSSG detection, and IHC. Pharmacokinetic and pharmacodynamic profiles were assessed through LC–MS/MS and Western blotting. The effects of BEBT-908 in vivo were examined using xenografts and brain orthotopic mouse models.

Results

Our findings demonstrate that BEBT-908 exhibits promising anti-tumor activity in vitro and in vivo across multiple subtypes of hematological malignancies. Furthermore, BEBT-908 exhibits excellent BBB penetration and inhibits tumor growth in a brain orthotopic lymphoma model with prolonged survival of host mice. Mechanistically, BEBT-908 downregulated c-Myc expression, which contributed to ferroptosis, ultimately leading to tumor shrinkage.

Conclusion

Our study provides robust evidence for the dual PI3K/HDAC inhibitor BEBT-908 as an effective anti-cancer agent for PCNSL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Deckert M, Engert A, Brück W, et al. Modern concepts in the biology, diagnosis, differential diagnosis and treatment of primary central nervous system lymphoma. Leukemia. 2011;25(12):1797–807. https://doi.org/10.1038/leu.2011.169.

    Article  CAS  PubMed  Google Scholar 

  2. Houillier C, Soussain C, Ghesquières H, et al. Management and outcome of primary CNS lymphoma in the modern era: an LOC network study. Neurology. 2020;94(10):e1027–39. https://doi.org/10.1212/WNL.0000000000008900.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shao L, Xu C, Wu H, et al. Recent progress on primary central nervous system lymphoma-from bench to bedside. Front Oncol. 2021;11: 689843. https://doi.org/10.3389/fonc.2021.689843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Grommes C, DeAngelis LM. Primary CNS lymphoma. J Clin Oncol. 2017;35(21):2410–8. https://doi.org/10.1200/JCO.2017.72.7602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schabet M. Epidemiology of primary CNS lymphoma. J Neurooncol. 1999;43(3):199–201. https://doi.org/10.1023/a:1006290032052.

    Article  CAS  PubMed  Google Scholar 

  6. Schultz C, Scott C, Sherman W, et al. Preirradiation chemotherapy with cyclophosphamide, doxorubicin, vincristine, and dexamethasone for primary CNS lymphomas: initial report of radiation therapy oncology group protocol 88-06. J Clin Oncol. 1996;14(2):556–64. https://doi.org/10.1200/JCO.1996.14.2.556.

    Article  CAS  PubMed  Google Scholar 

  7. Eyre TA, Kirkwood AA, Wolf J, et al. Stand-alone intrathecal central nervous system (CNS) prophylaxis provide unclear benefit in reducing CNS relapse risk in elderly DLBCL patients treated with R-CHOP and is associated increased infection-related toxicity. Br J Haematol. 2019;187(2):185–94. https://doi.org/10.1111/bjh.16070.

    Article  CAS  PubMed  Google Scholar 

  8. Gleeson M, Counsell N, Cunningham D, et al. Central nervous system relapse of diffuse large B-cell lymphoma in the rituximab era: results of the UK NCRI R-CHOP-14 versus 21 trial. Ann Oncol. 2017;28(10):2511–6. https://doi.org/10.1093/annonc/mdx353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ferreri AJ, Cwynarski K, Pulczynski E, et al. Chemoimmunotherapy with methotrexate, cytarabine, thiotepa, and rituximab (MATRix regimen) in patients with primary CNS lymphoma: results of the first randomisation of the International Extranodal Lymphoma Study Group-32 (IELSG32) phase 2 trial. Lancet Haematol. 2016;3(5):e217–27. https://doi.org/10.1016/S2352-3026(16)00036-3.

    Article  PubMed  Google Scholar 

  10. Chen T, Liu Y, Wang Y, et al. Evidence-based expert consensus on the management of primary central nervous system lymphoma in China. J Hematol Oncol. 2022;15(1):136. https://doi.org/10.1186/s13045-022-01356-7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wilson MR, Eyre TA, Kirkwood AA, et al. Timing of high-dose methotrexate CNS prophylaxis in DLBCL: a multicenter international analysis of 1384 patients. Blood. 2022;139(16):2499–511. https://doi.org/10.1182/blood.2021014506.

    Article  CAS  PubMed  Google Scholar 

  12. von Baumgarten L, Illerhaus G, Korfel A, Schlegel U, Deckert M, Dreyling M. The diagnosis and treatment of primary CNS lymphoma. Dtsch Arztebl Int. 2018;115(25):419–26. https://doi.org/10.3238/arztebl.2018.0419.

    Article  Google Scholar 

  13. Mendez JS, Grommes C. Treatment of primary central nervous system lymphoma: from chemotherapy to small molecules. Am Soc Clin Oncol Educ Book. 2018;38:604–15. https://doi.org/10.1200/EDBK_200829.

    Article  PubMed  Google Scholar 

  14. Langner-Lemercier S, Houillier C, Soussain C, et al. Primary CNS lymphoma at first relapse/progression: characteristics, management, and outcome of 256 patients from the French LOC network. Neuro Oncol. 2016;18(9):1297–303. https://doi.org/10.1093/neuonc/now033.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yu H, Kong H, Li C, et al. Bruton’s tyrosine kinase inhibitors in primary central nervous system lymphoma-evaluation of anti-tumor efficacy and brain distribution. Transl Cancer Res. 2021;10(5):1975–83. https://doi.org/10.21037/tcr-21-50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Korfel A, Schlegel U, Herrlinger U, et al. Phase II trial of temsirolimus for relapsed/refractory primary CNS lymphoma. J Clin Oncol. 2016;34(15):1757–63. https://doi.org/10.1200/JCO.2015.64.9897.

    Article  CAS  PubMed  Google Scholar 

  17. Ghesquieres H, Chevrier M, Laadhari M, et al. Lenalidomide in combination with intravenous rituximab (REVRI) in relapsed/refractory primary CNS lymphoma or primary intraocular lymphoma: a multicenter prospective “proof of concept” phase II study of the French Oculo-Cerebral lymphoma (LOC) Network and the Lymphoma Study Association (LYSA)†. Ann Oncol. 2019;30(4):621–8. https://doi.org/10.1093/annonc/mdz032.

    Article  CAS  PubMed  Google Scholar 

  18. Roberts AW, Davids MS, Pagel JM, et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374(4):311–22. https://doi.org/10.1056/NEJMoa1513257.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang X, Wu Y, Sun X, et al. The PI3K/AKT/mTOR signaling pathway is aberrantly activated in primary central nervous system lymphoma and correlated with a poor prognosis. BMC Cancer. 2022;22(1):190. https://doi.org/10.1186/s12885-022-09275-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tarantelli C, Gaudio E, Hillmann P, et al. The novel TORC1/2 kinase inhibitor PQR620 has anti-tumor activity in lymphomas as a single agent and in combination with venetoclax. Cancers (Basel). 2019;11(6):775. https://doi.org/10.3390/cancers11060775.

    Article  CAS  PubMed  Google Scholar 

  21. Jain N, Singh S, Laliotis G, et al. Targeting phosphatidylinositol 3 kinase-β and -δ for Bruton tyrosine kinase resistance in diffuse large B-cell lymphoma. Blood Adv. 2020;4(18):4382–92. https://doi.org/10.1182/bloodadvances.2020001685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang X, Liu Y. Targeting the PI3K/AKT/mTOR signaling pathway in primary central nervous system lymphoma: current status and future prospects. CNS Neurol Disord Drug Targets. 2020;19(3):165–73. https://doi.org/10.2174/1871527319666200517112252.

    Article  CAS  PubMed  Google Scholar 

  23. Grommes C, Gavrilovic I, Miller AM, et al. Phase Ib of copanlisib in combination with ibrutinib in recurrent/refractory primary CNS lymphoma (PCNSL). Blood. 2019;134(Suppl 1):1598. https://doi.org/10.1182/blood-2019-126214.

    Article  Google Scholar 

  24. Rahmani M, Aust MM, Benson EC, Wallace L, Friedberg J, Grant S. PI3K/mTOR inhibition markedly potentiates HDAC inhibitor activity in NHL cells through BIM- and MCL-1-dependent mechanisms in vitro and in vivo. Clin Cancer Res. 2014;20(18):4849–60. https://doi.org/10.1158/1078-0432.CCR-14-0034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fan F, Liu P, Bao R, et al. A dual PI3K/HDAC inhibitor induces immunogenic ferroptosis to potentiate cancer immune checkpoint therapy. Cancer Res. 2021;81(24):6233–45. https://doi.org/10.1158/0008-5472.CAN-21-1547.

    Article  CAS  PubMed  Google Scholar 

  26. Kapadia B, Nanaji NM, Bhalla K, et al. Fatty acid synthase induced S6Kinase facilitates USP11-eIF4B complex formation for sustained oncogenic translation in DLBCL. Nat Commun. 2018;9(1):829. https://doi.org/10.1038/s41467-018-03028-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu W, Bi C, Credille KM, et al. Inhibition of tumor growth and metastasis in non-small cell lung cancer by LY2801653, an inhibitor of several oncokinases, including MET. Clin Cancer Res. 2013;19(20):5699–710. https://doi.org/10.1158/1078-0432.CCR-13-1758.

    Article  CAS  PubMed  Google Scholar 

  28. Dong Y, Tu R, Liu H, Qing G. Regulation of cancer cell metabolism: oncogenic MYC in the driver’s seat. Signal Transduct Target Ther. 2020;5(1):124. https://doi.org/10.1038/s41392-020-00235-2.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kurland JF, Tansey WP. Myc-mediated transcriptional repression by recruitment of histone deacetylase. Cancer Res. 2008;68(10):3624–9. https://doi.org/10.1158/0008-5472.CAN-07-6552.

    Article  CAS  PubMed  Google Scholar 

  30. Alborzinia H, Flórez AF, Kreth S, et al. MYCN mediates cysteine addiction and sensitizes neuroblastoma to ferroptosis. Nat Cancer. 2022;3(4):471–85. https://doi.org/10.1038/s43018-022-00355-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Anderson GR, Wardell SE, Cakir M, et al. PIK3CA mutations enable targeting of a breast tumor dependency through mTOR-mediated MCL-1 translation. Sci Transl Med. 2016;8(369): 369ra175. https://doi.org/10.1126/scitranslmed.aae0348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martz CA, Ottina KA, Singleton KR, et al. Systematic identification of signaling pathways with potential to confer anticancer drug resistance. Sci Signal. 2014;7(357):ra121. https://doi.org/10.1126/scisignal.aaa1877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li L, Li Y, Que X, et al. Prognostic significances of overexpression MYC and/or BCL2 in R-CHOP-treated diffuse large B-cell lymphoma: a systematic review and meta-analysis. Sci Rep. 2018;8(1): 6267. https://doi.org/10.1038/s41598-018-24631-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fujimoto K, Shinojima N, Hayashi M, Nakano T, Ichimura K, Mukasa A. Histone deacetylase inhibition enhances the therapeutic effects of methotrexate on primary central nervous system lymphoma. Neurooncol Adv. 2020;2(1): vdaa084. https://doi.org/10.1093/noajnl/vdaa084.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fushun Fan or Wenyu Li.

Ethics declarations

Funding

This study is funded by National Science and Technology Major Project of China (2016ZX09101002), Guangdong Pearl River Talents Plan (2014ZT05Y232), Guangzhou Municipal Science and Technology Project (201909020004).

Conflict of interest

C. Qian and X. Cai are inventors of BEBT-908 and founders of Guangzhou BeBetter Medicine Technology Co., Ltd. N.Wang, Z.Mo, L.Pan, M.Zhou, X.Ye, X.Liu, F.Chen, Y. Xiong, F.Fan, W.Li declare that they have no conflicts of interest that might be relevant to the contents of this article.

Institutional Review Board Statement

The animal study was approved by Curis Inc and Ruiye Animal Model Inc Animal Use and Care Committee.

Consent to Participate and Publish

Not applicable due to the study being preclinical in nature.

Data Availability

The data generated in the present study are included in the article and the Online Supplementary Materials.

Code Availability

Not applicable.

Author Contributions

Conceptualization: WL, FF, XL, CQ; Methodology: NW, ZM, LP, MZ, XY, FC; Validation: WL, FF, NW; Formal Analysis: FF, NW; Investigation: WL, FF; Resources: WL, CQ, XC, YX; Data curation: FF, NW; Writing—original draft preparation: NW, FF; Writing—review and editing: FF, XL; Supervision: FF, XL; Project administration: WL, FF; Funding acquisition: CQ.

Additional information

Xiong Cai and Changgeng Qian are former employees of Curis, Inc.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 117 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Mo, Z., Pan, L. et al. Dual PI3K/HDAC Inhibitor BEBT-908 Exhibits Potent Efficacy as Monotherapy for Primary Central Nervous System Lymphoma. Targ Oncol 18, 941–952 (2023). https://doi.org/10.1007/s11523-023-01006-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-023-01006-z

Navigation