Skip to main content
Log in

A hybrid EEG classification model using layered cascade deep learning architecture

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The problem of multi-class classification is always a challenge in the field of EEG (electroencephalogram)-based seizure detection. The traditional studies focus on computing or learning a set of features from EEG to distinguish between different patterns. However, the extraction of characteristic information becomes increasingly difficult as the number of EEG types increases. To address this issue, a creative EEG classification technique is proposed by employing a principal component analysis network (PCANet) coupled with phase space reconstruction (PSR) and power spectrum density (PSD). We have introduced the PSR and PSD to prepare the inputs, where dynamic and frequency information are exposed from deep within PCANet. It is remarkable that a layered cascade strategy is designed to make a powerful deep learner according to the rule of one network vs one task (OVO). The proposed method has achieved greater effects than the individual models and shown superior performance in comparison with state-of-the-art algorithms, which present 98.0% of sensitivity, 99.90% of specificity, and 99.07% of accuracy. Our ensemble PCANet model works in an assembly line-like manner, obviating the need for hand-craft features. Results demonstrate that the proposed scheme can greatly enhances the accuracy and robustness of seizure detection from EEG signals.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ma J, Wang Y, Liu B et al (2021) Accurately modeling the human brain functional correlations with hypergraph Laplacian. Neurocomputing 428:239–247

    Article  Google Scholar 

  2. Shayeste H, Asl BM (2023) Automatic seizure detection based on gray level co-occurrence matrix of STFT imaged-EEG. Biomed Signal Process Control 79:104109

    Article  Google Scholar 

  3. Wang JL, Ge XT, Shi YF et al (2023) Dual-modal information bottleneck network for seizure detection. Int J Neural Syst 33(1)

  4. https://www.who.int/en/news-room/fact-sheets/detail/epilepsy (Accessed Aug 2022)

  5. Gupta V, Kanungo A, Saxena N et al (2023) An adaptive optimized schizophrenia electroencephalogram disease prediction framework. Wirel Personal Commun Int J 130(2):1191–1213

    Article  Google Scholar 

  6. Thakur M, Dhanalakshmi S, Kuresan H et al (2023) Automated restricted Boltzmann machine classifier for early diagnosis of Parkinson’s disease using digitized spiral drawings. J Ambient Intell Humaniz Comput 14:175–189

    Article  Google Scholar 

  7. Chan TH, Jia K, Gao S et al (2014) A simple deep learning baseline for image classification. IEEE Trans Image Process 24(12):5017–5032

    Article  ADS  MathSciNet  Google Scholar 

  8. Huang Z, Zhu X, Ding M et al (2020) Medical image classification using a light-weighted hybrid neural network based on PCANet and DenseNet. IEEE Access 8(99):24697–24712

    Article  Google Scholar 

  9. Gan SZ, Zhang QB, Gong BY (2022) Human-computer interaction based interface design of intelligent health detection using PCANet and multi-sensor information fusion. Comput Methods Programs Biomed 216:106637

    Article  PubMed  Google Scholar 

  10. Zhang P, Yazid M, Jiang Y et al (2021) High-order triplet CRF-PCANet for unsupervised segmentation of nonstationary SAR image. IEEE Trans Geosci Remote Sens 59(10):8433–8454

    Article  ADS  Google Scholar 

  11. Fasil OK, Rajesh R (2023) Epileptic seizure classification using shifting sample difference of EEG signals. J Ambient Intell Humaniz Comput 14(9):11809–11822

    Article  Google Scholar 

  12. Cao Q, Omran AH, Baghersad Y et al (2023) Electroencephalogram signal classification based on Fourier transform and pattern recognition network for epilepsy diagnosis. Eng Appl Artif Intell 123:106479

    Article  Google Scholar 

  13. Subasi A, Kevric J, Canbaz MA (2019) Epileptic seizure detection using hybrid machine learning methods. Neural Comput Appl 31:317–325

    Article  Google Scholar 

  14. Correa AG, Orosco L, Diez P et al (2015) Automatic detection of epileptic seizures in long-term EEG records. Comput Biol Med 57:66–73

    Article  Google Scholar 

  15. Kumar Y, Dewal ML, Anand RS (2014) Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network. SIViP 8(7):1323–1334

    Article  Google Scholar 

  16. VicneSh J, Hagiwara Y (2019) Accurate detection of seizure using nonlinear parameters extracted from EEG signals. J Mech Med Biol 19(1):1940004

    Article  Google Scholar 

  17. Amin HU, Yusoff MZ, Ahmad RF (2020) A novel approach based on wavelet analysis and arithmetic coding for automated detection and diagnosis of epileptic seizure in EEG signals using machine learning techniques-ScienceDirect. Biomed Signal Process Control 161:113676

    Google Scholar 

  18. Kocadagli O, Ozer E, Batista AG (2023) Preictal phase detection on EEG signals using hybridized machine learning classifiers with a novel feature selection procedure based GAs and ICOMP. Expert Syst Appl 212:118825

    Article  Google Scholar 

  19. Zheng Q, Zhao P, Zhang D et al (2021) MR-DCAE: Manifold regularization-based deep convolutional autoencoder for unauthorized broadcasting identification. Int J Intell Syst 36(12):7204–7238

    Article  Google Scholar 

  20. Zheng Q, Zhao P, Li Y et al (2021) Spectrum interference-based two-level data augmentation method in deep learning for automatic modulation classification. Neural Comput Appl 33(13):7723–7745

    Article  Google Scholar 

  21. Zheng Q, Tian X, Yu Z et al (2023) DL-PR: generalized automatic modulation classification method based on deep learning with priori regularization. Eng Appl Artif Intell 122:106082

    Article  Google Scholar 

  22. Zheng Q, Tian X, Yu Z et al (2023) Application of wavelet-packet transform driven deep learning method in PM2. 5 concentration prediction: a case study of Qingdao, China. Sustain Cities Soc 92:104486

    Article  Google Scholar 

  23. Balwant MK (2022) A review on convolutional neural networks for brain tumor segmentation: methods, datasets, libraries, and future directions innovation and research in biomedical engineering. IRBM 43(6):521–537

    Article  Google Scholar 

  24. Khairandish MO, Sharma M, Jain V et al (2021) A hybrid CNN-SVM threshold segmentation approach for tumor detection and classification of MRI brain images. IRBM 43(4):290–299

    Article  Google Scholar 

  25. Prathaban BP, Balasubramanian R (2021) Dynamic learning framework for epileptic seizure prediction using sparsity based EEG reconstruction with optimized CNN classifier. Expert Syst Appl 170:114533

    Article  Google Scholar 

  26. Tuncer E, Bolat ED (2022) Channel based epilepsy seizure type detection from electroencephalography (EEG) signals with machine learning techniques. Biocybernetics Biomed Eng 42(2):575–595

    Article  Google Scholar 

  27. Elakkiya R (2021) Machine learning based intelligent automated neonatal epileptic seizure detection. J Intell Fuzzy Syst 40(5):8847–8855

    Article  Google Scholar 

  28. Zhang YL, Yao SX, Yang RD et al (2022) Epileptic seizure detection based on bidirectional gated recurrent unit network. IEEE Trans Neural Syst Rehab Eng 30:135–145

    Article  Google Scholar 

  29. Emami A, Kunii N, Matsuo T et al (2019) Autoencoding of long-term scalp electroencephalogram to detect epileptic seizure for diagnosis support system. Comput Biol Med 110:227–233

    Article  PubMed  Google Scholar 

  30. Gao B, Zhou J, Yang Y et al (2022) Generative adversarial network and convolutional neural network-based EEG imbalanced classification model for seizure detection. Biocybernetics Biomed Eng 42(1):1–15

    Article  Google Scholar 

  31. EEG Time Series Data (Department of Epileptology University of Bonn, Germany). http://epileptologie-bonn.de/cms/front_content.php?idcat=193&lang=3&changelang=3. (Accessed Aug 2022)

  32. Krishnaprasanna R, Baskar VV, Panneerselvam J (2021) Automatic identification of epileptic seizures using volume of phase space representation. Phys Eng Sci Med 44(2):1–12

    Article  Google Scholar 

  33. Zhang ZJ, Chongshi GU, Bao TF et al (2010) Application analysis of empirical mode decomposition and phase space reconstruction in dam time-varying characteristic. Sci China Technol Sci 53:1711–1716

    Article  ADS  Google Scholar 

  34. Peng Y, Xiang W (2020) Short-term traffic volume prediction using GA-BP based on wavelet denoising and phase space reconstruction. Phys A Statal Mech Appl 549:123913

    Article  Google Scholar 

  35. Kobayashi T, Nishizawa T, Sasaki M et al (2021) Method for estimating the frequency-wave number resolved power spectrum density using the maximum entropy method for limited spatial points. Plasma Phys Control Fusion 63(4):045011

    Article  ADS  Google Scholar 

  36. Gupta V, Rathore NS, Arora AK et al (2022) Electrocardiogram signal pattern recognition using PCA and ICA on different databases for improved health management. Int J Appl Pattern Recog 7(1):41–63

    Article  Google Scholar 

  37. Gupta V, Mittal M, Mittal V (2021) FrWT-PPCA-based R-peak detection for improved management of healthcare system[J]. IETE J Res (8):5064–5078

  38. Gupta V, Mittal M, Mittal V (2022) A novel FrWT based arrhythmia detection in ECG signal using YWARA and PCA. Wirel Pers Commun 124(2):1229–1246

    Article  Google Scholar 

  39. Wu J, Qiu S, Kong Y et al (2018) PCANet: an energy perspective. Neurocomputing 313:271–281

    Article  Google Scholar 

  40. Feng G, Dong J, Bo L et al (2017) Automatic change detection in synthetic aperture radar images based on PCANet. IEEE Geoence Remote Sens Lett 13(12):1792–1796

    Google Scholar 

  41. Vapnik V (1995) The nature of statistical learning theory. Springer

  42. Gupta V (2023) Wavelet transform and vector machines as emerging tools for computational medicine. J Ambient Intell Humaniz Comput 14:4595–4605

    Article  Google Scholar 

  43. Wu Y, Misra S (2020) Intelligent image segmentation for organic-rich shales using random forest, wavelet transform, and Hessian matrix. IEEE Geosci Remote Sens Lett 17(7):1144–1147

    Article  ADS  Google Scholar 

  44. Sun Y, Zhang H, Zhao T, Zou Z, Shen B, Yang L (2020) A new convolutional neural network with random forest method for hydrogen sensor fault diagnosis. IEEE Access 8:85421–85430

    Article  Google Scholar 

  45. Mirzaee-Ghaleh E, Taheri-Garavand A, Ayari F, Lozano J (2020) Identification of fresh-chilled and frozen-thawed chicken meat and estimation of their shelf life using an E-nose machine coupled fuzzy KNN. Food Anal Methods 13:678–689

    Article  Google Scholar 

  46. Lin A, Wu Q, Heidari A, Xu Y, Chen H, Geng W, Li Y, Li C (2019) Predicting intentions of students for master programs using a chaos-induced sine cosine-based fuzzy K-nearest neighbor classifier. IEEE Access 7:67235–67248

    Article  Google Scholar 

  47. Zhang T, Chen W (2017) LMD based features for the automatic seizure detection of EEG signals using SVM. IEEE Trans Neural Syst Rehabil Eng 25(8):1100–1108

    Article  PubMed  Google Scholar 

  48. Jaiswal AK, Banka H (2018) Epileptic seizure detection in EEG signal using machine learning techniques. Australas Phys Eng Sci Med 41(1):81–94

    Article  PubMed  Google Scholar 

  49. Yavuz E, Kasapbaşı MC, Eyüpoğlu C, Yazıcı R (2018) An epileptic seizure detection system based on cepstral analysis and generalized regression neural network. Biocybernetics Biomed Eng 38(2):201–216

    Article  Google Scholar 

  50. Raghu S, Sriraam N, Hegde AS et al (2019) A novel approach for classification of epileptic seizures using matrix determinant. Expert Syst Appl 127:323–341

    Article  Google Scholar 

  51. Hassan AR, Subasi A, Zhang Y (2020) Epilepsy seizure detection using complete ensemble empirical mode decomposition with adaptive noise. Knowl-Based Syst 191:105333

    Article  Google Scholar 

  52. Sukriti, Chakraborty M, Mitra D (2021) Epilepsy seizure detection using kurtosis based VMD’s parameters selection and bandwidth features. Biomed Signal Process Control 64:102255

    Article  Google Scholar 

  53. Qaisar SM, Hussain SF (2021) Effective epileptic seizure detection by using level-crossing EEG sampling sub-bands statistical features selection and machine learning for mobile healthcare. Comput Methods Programs Biomed 6:106034

    Article  Google Scholar 

  54. Tuncer E, Bolat ED (2022) Classification of epileptic seizures from electroencephalogram (EEG) data using bidirectional short-term memory (Bi-LSTM) network architecture. Biomed Signal Process Control 73:103462

    Article  Google Scholar 

  55. Xin Q, Hu S, Liu S et al (2022) An attention-based wavelet convolution neural network for epilepsy eeg classification. IEEE Trans Neural Syst Rehabil Eng 30:957–966

    Article  PubMed  Google Scholar 

  56. Ilias L, Askounis D, Psarras J (2023) Multimodal detection of epilepsy with deep neural networks. Expert Syst Appl 213:119010

    Article  Google Scholar 

  57. Liu S, Wang J, Li S, Cai L (2023) Epileptic seizure detection and prediction in eegs using power spectra density parameterization. IEEE Trans Neural Syst Rehabil Eng 31:3884–3894

    Article  PubMed  Google Scholar 

  58. Qiu X, Yan F, Liu H (2023) A difference attention ResNet-LSTM network for epileptic seizure detection using EEG signal. Biomed Signal Process Control 83:104652

    Article  Google Scholar 

  59. Wang B, Yang X, Li S et al (2024) Automatic epileptic seizure detection based on EEG using a moth-flame optimization of one-dimensional convolutional neural networks. Front Neurosci 13:1291608

    Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Grant No. 62203183), the Science and Technology Project of the Education Department in Jilin Province (Grant No. JJKH20231172KJ), and the Natural Science Foundation of Chongqing (Grant No. CSTB2023NSCQ-MSX0714).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyang Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Chen, W. & Li, M. A hybrid EEG classification model using layered cascade deep learning architecture. Med Biol Eng Comput (2024). https://doi.org/10.1007/s11517-024-03072-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11517-024-03072-5

Keywords

Navigation