Skip to main content

Advertisement

Log in

Advances and challenges in organ-on-chip technology: toward mimicking human physiology and disease in vitro

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Organs-on-chips have been tissues or three-dimensional (3D) mini-organs that comprise numerous cell types and have been produced on microfluidic chips to imitate the complicated structures and interactions of diverse cell types and organs under controlled circumstances. Several morphological and physiological distinctions exist between traditional 2D cultures, animal models, and the growing popular 3D cultures. On the other hand, animal models might not accurately simulate human toxicity because of physiological variations and interspecies metabolic capability. The on-chip technique allows for observing and understanding the process and alterations occurring in metastases. The present study aimed to briefly overview single and multi-organ-on-chip techniques. The current study addresses each platform’s essential benefits and characteristics and highlights recent developments in developing and utilizing technologies for single and multi-organs-on-chips. The study also discusses the drawbacks and constraints associated with these models, which include the requirement for standardized procedures and the difficulties of adding immune cells and other intricate biological elements. Finally, a comprehensive review demonstrated that the organs-on-chips approach has a potential way of investigating organ function and disease. The advancements in single and multi-organ-on-chip structures can potentially increase drug discovery and minimize dependency on animal models, resulting in improved therapies for human diseases.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

No data is available.

References

  1. Engle SJ, Puppala D (2013) Integrating human pluripotent stem cells into drug development. Cell Stem Cell 12(6):669–677. https://doi.org/10.1016/j.stem.2013.05.011

    Article  PubMed  CAS  Google Scholar 

  2. Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21(12):745–754. https://doi.org/10.1016/j.tcb.2011.09.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. van der Meer AD, van den Berg A (2012) Organs-on-chips: breaking the in vitro impasse. Integr Biol 4(5):461–470. https://doi.org/10.1039/c2ib00176d

    Article  CAS  Google Scholar 

  4. Brownell L (2018) FDA expands award to Wyss Institute for radiation treatment studies using Organ Chips, Wyss Institute

  5. Goldstein Y, Spitz S, Turjeman K, Selinger F, Barenholz Y, Ertl P, Benny O, Bavli D (2021) Breaking the third wall: implementing 3D-printing techniques to expand the complexity and abilities of multi-organ-on-a-chip devices. Micromachines 2(6):627. https://doi.org/10.3390/mi12060627

    Article  Google Scholar 

  6. Boeri L, Izzo L, Sardelli L, Tunesi M, Albani D, Giordano C (2019) Advanced organ-on-a-chip devices to investigate liver multi-organ communication: focus on gut, microbiota and brain. Bioeng 6(4):91. https://doi.org/10.3390/bioengineering6040091

    Article  CAS  Google Scholar 

  7. Giese C, Lubitz A, Demmler CD, Reuschel J, Bergner K, Marx U (2010) Immunological substance testing on human lymphatic micro-organoids in vitro. J Biotechnol 148(1):38–45. https://doi.org/10.1016/j.jbiotec.2010.03.001

    Article  PubMed  CAS  Google Scholar 

  8. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328(5986):1662–1668. https://doi.org/10.1126/science.1188302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Baker M (2011) A living system on a chip. Nature 471:661–665. https://doi.org/10.1038/471661a

    Article  PubMed  CAS  Google Scholar 

  10. Korin N, Kanapathipillai M, Matthews BD, Crescente M, Brill A, Mammoto T, Ghosh K, Jurek S, Bencherif SA, Bhatta D, Coskun AU, Feldman CL, Wagner DD, Ingber DE (2012) Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science 337(6095):738–742. https://doi.org/10.1126/science.1217815

    Article  PubMed  CAS  Google Scholar 

  11. Weibel DB, Whitesides GM (2006) Applications of microfluidics in chemical biology. Curr Opin Chem Biol 10(6):584–591. https://doi.org/10.1016/j.cbpa.2006.10.016

    Article  PubMed  CAS  Google Scholar 

  12. Luni C, Feldman HC, Pozzobon M, De Coppi P, Meinhart CD, Elvassore N (2010) Microliter-bioreactor array with buoyancy-driven stirring for human hematopoietic stem cell culture. Biomicrofluidics 4(3):034105. https://doi.org/10.1063/1.3380627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Schwarz US, Bischofs IB (2005) Physical determinants of cell organization in soft media. Med Eng Phys 27(9):763–772. https://doi.org/10.1016/j.medengphy.2005.04.007

    Article  PubMed  Google Scholar 

  14. Richardson L et al (2020) Fetal Membrane Organ-On-Chip: An Innovative Approach to Study Cellular. Interactions. 27(8):62–69. https://doi.org/10.1007/s43032-020-00184-9

    Article  Google Scholar 

  15. Mummery C, Wilmut I, van de Stolpe A, Roelen BAJ (2011) Stem cells, scientific facts, and fiction. Elsevier Books

    Google Scholar 

  16. van de Stolpe A, den Toonder J (2013) Workshop meeting report Organs-on-chips: human disease models. Lab Chip 13:3449–3470. https://doi.org/10.1039/C3LC50248A

    Article  PubMed  Google Scholar 

  17. Barker N, Clevers H (2010; Chapter 5: Unit5A) Lineage tracing in the intestinal epithelium. Curr Protoc Stem Cell Biol. https://doi.org/10.1002/9780470151808.sc05a04s13

  18. Snippert HJ, Schepers AG, Delconte G, Siersema PD, Clevers H (2011) Slide preparation for single-cell-resolution imaging of fluorescent proteins in their three-dimensional near-native environmen. Nat Protoc 6(8):1221–1228. https://doi.org/10.1038/nprot.2011.365

    Article  PubMed  CAS  Google Scholar 

  19. Kim J, Hayward RC (2012) Mimicking dynamic in vivo environments with stimuli-responsive materials for cell culture. Trends Biotechnol 30:426–439. https://doi.org/10.1016/j.tibtech.2012.04.003

    Article  PubMed  CAS  Google Scholar 

  20. Singh D, Mathur A, Arora S, Roy S, Mahindroo N (2022) Journey of organ on a chip technology and its role in future healthcare scenario. Appl Surf Sci 9:100246. https://doi.org/10.1016/j.apsadv.2022.100246

    Article  Google Scholar 

  21. Danku AE, Dulf EH, Braicu C, Jurj A, Neagoe LB (2022) Organ-on-a-chip: a survey of technical results and problems. Front Bioeng Biotechnol 10. https://doi.org/10.3389/fbioe.2022.840674

  22. Ronaldson-Bouchard K, Vunjak-Novakovic G (2018) Organs-on-a-chip: a fast track for engineered human tissues in drug development. Cell Stem Cell 22(3):310–324. https://doi.org/10.1016/j.stem.2018.02.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Zamprogno P, Wüthrich S, Achenbach S (2021) Second-generation lung-on-a-chip with an array of stretchable alveoli made with a biological membrane. Commun Biol 4:168. https://doi.org/10.1038/s42003-021-01695-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Lee PJ, Hung PJ, Lee LP (2007) An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol Bioeng 97:1340–1346. https://doi.org/10.1002/bit.21360

    Article  PubMed  CAS  Google Scholar 

  25. Lee J, Kim S (2018) Kidney-on-a-Chip: a new technology for predicting drug efficacy, interactions, and drug-induced nephrotoxicity. Curr Drug Metab 19(7):577–583. https://doi.org/10.2174/1389200219666180309101844

    Article  PubMed  CAS  Google Scholar 

  26. Liu H, Bolonduro OA, Ning Hu JJ, Rao AA, Duffy BM, Huang Z, Black LD, Timko BP (2020) Heart-on-a-Chip model with integrated extra and intracellular bioelectronics for monitoring cardiac electrophysiology under acute hypoxia. Nano Lett 20:2585–2593. https://doi.org/10.1021/acs.nanolett.0c00076

    Article  PubMed  CAS  Google Scholar 

  27. Lukacs B, Bajza A, Kocsis D, Csorba A, Antal I, Ivan K, Laki AJ, Erdo F (2019) Skin-on-a-Chip device for ex vivo monitoring of transdermal delivery of drugs-design, fabrication, and testing. Pharmaceutics 11(9):445. https://doi.org/10.3390/pharmaceutics11090445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Raimondi L, Izzo L, Tunesi M, Comar M, Albani D, Giordano C (2020) Organ-on-a-chip in vitro models of the brain and the blood-brain barrier and their value to study the microbiota-gut-brain axis in neurodegeneration. Front Bioeng Biotechnol 10(7):435. https://doi.org/10.3389/fbioe.2019.00435

    Article  Google Scholar 

  29. Dalsbecker P, Adiels CB, Goksör M (2022) Liver-on-a-chip devices: the pros and cons of complexity. Am J Physiol Gastrointest Liver Physiol 323(3):188–204. https://doi.org/10.1152/ajpgi.00346.2021

    Article  CAS  Google Scholar 

  30. Fraczek J, Bolleyn J, Vanhaecke T, Rogiers V, Vinken M (2013) Primary hepatocyte cultures for pharmaco-toxicological studies: at the busy crossroad of various antidedifferentiation strategies. Arch Toxicol 87(4):577–610. https://doi.org/10.1007/s00204-012-0983-3

    Article  PubMed  CAS  Google Scholar 

  31. LeCluyse EL (2001) Human hepatocyte culture systems for the in vitro evaluation of cytochrome P450 expression and regulation. Eur J Pharm Sci 13(4):343–368. https://doi.org/10.1016/s0928-0987(01)00135-x

    Article  PubMed  CAS  Google Scholar 

  32. Mccuskey RS (2008) The hepatic microvascular system in health and its response to toxicants. Anat Rec 291(6):661–671. https://doi.org/10.1002/ar.20663

    Article  Google Scholar 

  33. Kane BJ, Zinner MJ, Yarmush ML, Toner M (2006) Liver-specific functional studies in a microfluidic array of primary mammalian hepatocytes. Anal Chem 78:4291. https://doi.org/10.1021/ac051856v

    Article  PubMed  CAS  Google Scholar 

  34. Ho CT, Lin RZ, Chen RJ, Chin CK, Gong SE, Chang HY, Peng HL, Hsu L, Yew TR, Chang SF (2013) Liver-cell patterning lab chip: mimicking the morphology of liver lobule tissue. Lab Chip 13:3578–3587. https://doi.org/10.1039/c3lc50402f

    Article  PubMed  CAS  Google Scholar 

  35. Yum K, Hong SG, Healy KE, Lee LP (2014) Physiologically relevant organs on chips. Biotechnol J 9(1):16–27. https://doi.org/10.1002/biot.201300187

    Article  PubMed  CAS  Google Scholar 

  36. Kang YBA, Sodunke TR, Lamontagne J, Cirillo J, Rajiv C, Bouchard MJ, Noh M (2015) Liver sinusoid on a chip: long term layered coculture of primary rat hepatocytes and endothelial cells in microfluidic platforms. Biotechnol Bioeng 112(12):2571–2582. https://doi.org/10.1002/bit.25659

    Article  PubMed  CAS  Google Scholar 

  37. Ma LD, Wang YT, Wang JR, Wu JL, Meng XS, Hu P, Mu X, Liang QL, Luo GA (2018) Design and fabrication of a liver on- a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids. Lab Chip 18:2547–2562. https://doi.org/10.1039/c8lc00333e

    Article  PubMed  CAS  Google Scholar 

  38. Lu S, Cuzzucoli F, Jiang J, Liang LG, Wang Y, Kong M, Zhao X, Cui W, Li J, Wang S (2018) Development of a biomimetic liver tumor-on-a-chip model based on decellularized liver matrix for toxicity testing. Lab Chip 18:3379–3392. https://doi.org/10.1039/c8lc00852c

    Article  PubMed  CAS  Google Scholar 

  39. Chong LH, Li H, Wetzel I, Cho H, Toh YC (2018) A liver-immune coculture array for predicting systemic drug-induced skin sensitization. Lab Chip 18:3239–3250. https://doi.org/10.1039/c8lc00790j

    Article  PubMed  CAS  Google Scholar 

  40. Zhou Q, Patel D, Kwa T, Haque A, Matharu Z, Stybayeva G, Gao Y, Diehl AM, Revzin A (2015) Liver injury-on-a-chip: microfluidic cocultures with integrated biosensors for monitoring liver cell signaling during injury. Lab Chip 15:4467–4478. https://doi.org/10.1039/C5LC00874C

    Article  PubMed  CAS  Google Scholar 

  41. Schütte J, Hagmeyer B, Holzner F, Kubon M, Werner S, Freudigmann C, Benz K, Böttger J, Gebhardt R, Becker H, Stelzle M (2011) Artificial micro-organs—a microfluidic device for dielectrophoretic assembly of liver sinusoids. Biomed Microdevices 13(3):493–501. https://doi.org/10.1007/s10544-011-9517-7

    Article  PubMed  Google Scholar 

  42. Domansky K, Inman W, Serdy J, Dash A, Lim MHM, Griffith LG (2010) Perfused multiwell plate for 3D liver tissue engineering. Lab Chip 10:51–58. https://doi.org/10.1039/B913221J

    Article  PubMed  CAS  Google Scholar 

  43. van Midwoud PM, Verpoorte E, Groothuis GMM (2011) Microfluidic devices for vitro studies on liver drug metabolism and toxicity. Integr Boil 3(5):509–521. https://doi.org/10.1039/c0ib00119h

    Article  CAS  Google Scholar 

  44. Powers MJ, Domansky K, Kaazempur-Mofrad MR, Kalezi A, Capitano A, Upadhyaya A, Kurzawski P, Wack KE, Stolz DB, Kamm R, Griffith LG (2002) A microfabricated array bioreactor for perfused 3D liver culture. Biotechnol Bioeng 78(3):257–269. https://doi.org/10.1002/bit.10143

    Article  PubMed  CAS  Google Scholar 

  45. Khetani SR, Bhatia SN (2008) Microscale culture of human liver cells for drug development. Nat Biotechnol 26:120–126. https://doi.org/10.1038/nbt1361

    Article  PubMed  CAS  Google Scholar 

  46. Lee SA, No DY, Kang E, Ju J, Kim DS, Lee SH (2013) Spheroid-based three-dimensional liver-on-a-chip to investigate hepatocyte-hepatic stellate cell interactions and flow effects. Lab Chip 13(18):3529–3537. https://doi.org/10.1039/C3LC50197C

    Article  PubMed  CAS  Google Scholar 

  47. Prodanov L, Jindal R, Bale SS, Hegde M, McCarty WJ, Golberg I, Bhushan A, Yarmush ML, Usta OB (2016) Long-term maintenance of a microfluidic 3D human liver sinusoid: maintenance of a microfluidic 3D human liver sinusoid. Biotechnol Bioeng 113(1):241–246. https://doi.org/10.1002/bit.25700

    Article  PubMed  CAS  Google Scholar 

  48. Essaouiba A, Okitsu T, Kinoshita R, Jellali R, Shinohara M, Danoy M, Legallais C, Sakai Y, Leclerc E (2020) Development of a pancreas-liver organ-on-chip coculture model for organ-to-organ interaction studies. Biochem Eng J 164:107783. https://doi.org/10.1016/j.bej.2020.107783

    Article  CAS  Google Scholar 

  49. Polidoro MA, Ferrari E, Marzorati S, Lleo A, Rasponi M (2021) Experimental liver models: From cell culture techniques to microfluidic organs-on-chip. Liver Int 41(8):1744–1761. https://doi.org/10.1111/liv.14942

    Article  PubMed  Google Scholar 

  50. Kanabekova P, Kadyrova A, Kulsharova G (2022) Microfluidic organ-on-a-chip devices for liver disease modeling in vitro. Micromachines (Basel) 13(3):428. https://doi.org/10.3390/mi13030428

    Article  PubMed  Google Scholar 

  51. Moradi E, Jalili-Firoozinezhad S, Solati-Hashjin M (2020) Microfluidic organ-on-a-chip models of human liver tissue. Acta Biomater 116:67–83. https://doi.org/10.1016/j.actbio.2020.08.041

    Article  PubMed  CAS  Google Scholar 

  52. Chen M, Vijay V, Shi Q, Liu Z, Fang H, Tong W (2011) FDA-approved drug labeling for the study of drug-induced liver injury. Drug Discov Today 16(15-16):697–703. https://doi.org/10.1016/j.drudis.2011.05.007

    Article  PubMed  Google Scholar 

  53. World Health Organization. Cardiovascular diseases (CVDs). Available from: http://www.who.int/mediacentre/factsheets/fs317/en/

  54. Liu Y, Lin L, Qiao L (2023) Recent developments in organ-on-a-chip technology for cardiovascular disease research. Anal Bioanal Chem. https://doi.org/10.1007/s00216-023-04596-9

  55. Reinecke M (1985) Neurotensin. Immunohistochemical localization in central and peripheral nervous system and endocrine cells and its functional role as neurotransmitter and endocrine hormone. Prog Histochem Cytochem 16(1):1–172

    PubMed  CAS  Google Scholar 

  56. Ribas J, Sadeghi H, Manbachi A, Leijten J, Brinegar K, Zhang YS, Ferreira L, Khademhosseini A (2016) Cardiovascular organ-on-a-chip platforms for drug discovery and development. Appl In Vitro Toxicol 2(2):82–96. https://doi.org/10.1089/aivt.2016.0002

    Article  PubMed  PubMed Central  Google Scholar 

  57. Grosberg A, Nesmith AP, Goss JA, Brigham MD, McCain ML, Parker KK (2012) Muscle on a chip: in vitro contractility assays for smooth and striated muscle. J Pharmacol Toxicol Methods 65:126–135. https://doi.org/10.1016/j.vascn.2012.04.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Kim S, Lee H, Chung M, Jeon NL (2013) Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 13(8):1489–1500. https://doi.org/10.1039/C3LC41320A

    Article  PubMed  CAS  Google Scholar 

  59. Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K, Goli-Malekabadi Z, Aleman J, Colosi C, Busignani F, Dell’Erba V, Bishop C, Shupe T, Demarchi D, Moretti M, Rasponi M, Dokmeci MR, Atala A, Khademhosseini A (2016) Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110:45–59. https://doi.org/10.1016/j.biomaterials.2016.09.003s

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Xiao Y, Zhang B, Liu H, Miklas JW, Gagliardi M, Pahnke A, Thavandiran N, Sun Y, Simmons C, Keller G, Radisic M (2014) Microfabricated perfusable cardiac biowire: a platform that mimics native cardiac bundle. Lab Chip 14(5):869–882. https://doi.org/10.1039/c3lc51123e

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Marsano A, Conficconi C, Lemme M, Occhetta P, Gaudiello E, Votta E, Cerino G, Redaelli A, Rasponi M (2016) Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab Chip 16:599–610. https://doi.org/10.1039/c5lc01356a

    Article  PubMed  CAS  Google Scholar 

  62. Zhang X, Wang T, Wang P, Hu N (2016) High-throughput assessment of drug cardiac safety using a high-speed impedance detection technology-based heart-on-a-chip. Micromachines (Basel) 7(7):122. https://doi.org/10.3390/mi7070122

    Article  PubMed  Google Scholar 

  63. Nguyen MD, Tinney JP, Ye F, Elnakib AA, Yuan F, El-Baz A, Sethu P, Keller BB, Giridharan GA (2015) Effects of physiologic mechanical stimulation on embryonic chick cardiomyocytes using a microfluidic cardiac cell culture model. Anal Chem 87(4):2107–2113. https://doi.org/10.1021/ac503716z

    Article  PubMed  CAS  Google Scholar 

  64. Schneider O, Zeifang L, Fuchs S, Sailer C, Loskill P (2019) User-friendly and parallelized generation of human induced pluripotent stem cell-derived microtissues in a centrifugal heart-on-a-chip. Tissue Eng Part A 25:786–798. https://doi.org/10.1089/ten.TEA.2019.0002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Abulaiti M, Yalikun Y, Murata K, Sato A, Sami MM, Sasaki Y, Fujiwara Y, Minatoya K, Shiba Y, Tanaka Y, Masumoto H (2020) Establishment of a heart-on-a-chip microdevice based on human iPS cells for the evaluation of human heart tissue function. Sci Rep 10:19201. https://doi.org/10.1038/s41598-020-76062-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Haring AP, Johnson BN (2020) Brain-on-a-chip systems for modeling disease pathogenesis. Organ-on-a-Chip:215–232. https://doi.org/10.1016/B978-0-12-817202-5.00006-1

  67. Amirifar L, Shamloo A, Nasiri R, de Barros NR, Wang ZZ, Unluturk BD, Libanori A, Ievglevskyi O, Diltemiz SE, Sances S, Balasingham L, Seidlits SK, Ashammakhi N (2022) Brain-on-a-chip: recent advances in design and techniques for microfluidic models of the brain in health and disease. Biomaterials 285:121531. https://doi.org/10.1016/j.biomaterials.2022.121531

    Article  PubMed  CAS  Google Scholar 

  68. Wevers NR, Kasi DG, Gray T, Wilschut KJ, Smith B, van Vught R, Shimizu F, Sano Y, Kanda T, Marsh G, Trietsch SJ, Vulto P, Lanz HL, Obermeier B (2018) A perfused human blood-brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport. Fluids Barriers CNS 15(23). https://doi.org/10.1186/s12987-018-0108-3

  69. Bang S, Jeong S, Choi N, Kim HN (2019) Brain-on-a-chip: a history of development and future perspective. Biomicrofluidics 13:051301. https://doi.org/10.1063/1.5120555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Park J, Lee BK, Jeong GS, Hyun JK, Lee CJ, Lee SH (2015) Three-dimensional brain-on-a-chip with an interstitial level of flow and its application as an in vitro model of Alzheimer’s disease. Lab Chip 15:141–150. https://doi.org/10.1039/c4lc00962b

    Article  PubMed  CAS  Google Scholar 

  71. Kilic O, Pamies D, Lavell E, Schiapparelli P, Feng Y, Hartung T, Bal-Price A, Hogberg HT, Quinones-Hinojosa A, Guerrero-Cazares H, Levchenko A (2016) Brain-on-a-chip model enables analysis of human neuronal differentiation and chemotaxis. Lab Chip 16:4152–4162. https://doi.org/10.1039/c6lc00946h

    Article  PubMed  CAS  Google Scholar 

  72. Maoz BM, Herland A, Fitzgerald EA, Grevesse T, Vidoudez C, Pacheco AR, Sheehy SP, Park TE, Dauth S, Mannix R, Budnik N, Shores K, Cho A, Nawroth JC, Segre D, Budnik B, Ingber DE, Parker KK (2018) A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. Nat Biotechnol 36:865–874. https://doi.org/10.1038/nbt.4226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Oleaga C, Bernabini C, Smith AST, Srinivasan B, Jackson M, Mclamb W, Platt V, Bridges R, Cai Y, Santhanam N, Berry B, Najjar S, Akanda N, Guo X, Martin C, Ekman G, Esch MB, Langer J, Ouedraogo G et al (2016) Multi-Organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci Rep 6:20030. https://doi.org/10.1038/srep20030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Guenat OT, Berthiaume F (2018) Incorporating mechanical strain in organs-on-a-chip: lung and skin. Biomicrofluidics 2:42207. https://doi.org/10.1063/1.5024895

    Article  CAS  Google Scholar 

  75. Li K, Yang X, Xue C, Zhao L, Zhang Y, Gao X (2019) Biomimetic human lung-on-a-chip for modeling disease investigation. Biomicrofluidics 13(3):031501. https://doi.org/10.1063/1.5100070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Stucki AO, Stucki JD, Hall SRR, Felder M, Mermoud Y, Schmid RA, Geiser T, Guenat OT (2015) A lung-on-a-chip array with an integrated bio-inspired respiration mechanism. Lab Chip 15:1302–1310. https://doi.org/10.1039/c4lc01252f

    Article  PubMed  CAS  Google Scholar 

  77. Humayun M, Chow CW, Young EWK (2018) Microfluidic lung airway-on-a-chip with array able suspended gels for studying epithelial and smooth muscle cell interactions. Lab Chip 18:1298–1309. https://doi.org/10.1039/c7lc01357d

    Article  PubMed  CAS  Google Scholar 

  78. Blume C, Reale R, Held M, Millar TM, Collins JE, Davies DE, Morgan H, Swindle EJ (2015) Temporal monitoring of differentiated human airway epithelial cells using microfluidics. PLoS One 10:e0139872. https://doi.org/10.1371/journal.pone.0139872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Yang X, Li K, Zhang X, Liu C, Guo B, Wen W, Gao X (2018) Nanofiber membrane supported lung-on-a-chip microdevice for anti-cancer drug testing. Lab Chip 18:486–495. https://doi.org/10.1039/c7lc01224a

    Article  PubMed  CAS  Google Scholar 

  80. Peng J, Rochow N, Dabaghi M, Bozanovic R, Jansen J, Predescu D, DeFrance B, Lee SY, Fusch G, Selvaganapathy PR, Fusch C (2018) Postnatal dilatation of umbilical cord vessels and its impact on wall integrity: prerequisite for the artificial placenta. Int J Artif Organs 41(7):393–399. https://doi.org/10.1177/0391398818763663

    Article  PubMed  Google Scholar 

  81. Dabaghi M, Fusch G, Saraei N, Rochow N, Brash JL, Fusch C, Selvaganapathy PR (2018) An artificial placenta type microfluidic blood oxygenator with double-sided gas transfer microchannels and its integration as a neonatal lung assist device. Biomicrofluidics 12(4):44101. https://doi.org/10.1063/1.5034791

    Article  CAS  Google Scholar 

  82. Xu Z, Gao Y, Hao Y, Li E, Wang Y, Zhang J, Wang W, Gao Z, Wang Q (2013) Application of a microfluidic chip-based 3D coculture to test drug sensitivity for individualized treatment of lung cancer. Biomaterials 34:4109–4117. https://doi.org/10.1016/j.biomaterials.2013.02.045

    Article  PubMed  CAS  Google Scholar 

  83. Wang D, Cong Y, Deng Q, Han X, Zhang S, Zhao L, Luo Y, Zhang X (2021) Physiological and disease models of respiratory system based on organ-on-a-chip technology. Micromachines 12:1106. https://doi.org/10.3390/mi12091106

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kimura H, Sakai Y, Fujii T (2018) Organ/body-on-a-chip based on microfluidic technology for drug discovery. Drug Metab Pharmacokinet 33:43–48. https://doi.org/10.1016/j.dmpk.2017.11.003

    Article  PubMed  CAS  Google Scholar 

  85. Si L, Bai H, Rodas M, Cao W, Oh CY, Jiang A, Moller R, Hoagland D, Oishi K, Horiuchi S, Uhl S, Blanco-Melo D, Albrecht RA, Liu W-C, Jordan T, Nilsson-Payant BE, Golynker I, Frere J, Logue J et al (2021) A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. Nat Biomed Eng 5(8):815–829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Khalida MAU, Kima YS, Alia M, Leeb BG, Choc YJ, Choi KH (2020) A lung cancer-on-chip platform with integrated biosensors for physiological monitoring and toxicity assessment. Biochem Eng J 155:107469. https://doi.org/10.1016/j.bej.2019.107469

    Article  CAS  Google Scholar 

  87. Lu RXZ, Radisic M (2021) Organ-on-a-chip platforms for evaluation of environmental nanoparticle toxicity. Bioactive Mater 6:2801–2819. https://doi.org/10.1016/j.bioactmat.2021.01.021

    Article  CAS  Google Scholar 

  88. Jang KJ, Suh KY (2010) A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 10:36–42. https://doi.org/10.1039/b907515a

    Article  PubMed  CAS  Google Scholar 

  89. Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32:760–772. https://doi.org/10.1038/nbt.2989

    Article  PubMed  CAS  Google Scholar 

  90. Paoli R, Samitier J (2016) Mimicking the kidney: a key role in organ-on-chip development. Micromachines (Basel) 7(7):126. https://doi.org/10.3390/mi7070126

    Article  PubMed  Google Scholar 

  91. Jang KJ, Suh KY (2010) A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 10:36–42. https://doi.org/10.1039/b907515a

    Article  PubMed  CAS  Google Scholar 

  92. Jang KJ, Mehr AP, Hamilton GA, Mcpartlin LA, Chung S, Suh KY, Ingber DE (2013) Human kidney proximal tubule on-a-chip for drug transport and nephrotoxicity assessment. Integr Biol (Camb) 5:1119–1129. https://doi.org/10.1039/c3ib40049b

    Article  PubMed  CAS  Google Scholar 

  93. Wilmer MJ, Ng CP, Lanz HL, Vulto P, Suter-Dick L, Masereeuw R (2016) Kidney-on-a-chip technology for drug-induced nephrotoxicity screening. Trends Biotechnol 34(2):156–170. https://doi.org/10.1016/j.tibtech.2015.11.001

    Article  PubMed  CAS  Google Scholar 

  94. Musah S, Mammoto A, Ferrante TC, Jeanty SSF, Hirano-Kobayashi M, Mammoto T, Roberts K, Chung S, Novak R, Ingram M, Fatanat-Didar T, Koshy S, Weaver JC, Church GM, Ingber DE (2017) Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat Biomed Eng 1. https://doi.org/10.1038/s41551-017-0069

  95. Friedrich C, Endlich N, Kriz W, Endlich K (2006) Podocytes are sensitive to fluid shear stress in vitro. Am J Physiol Renal Physiol 291:856–865. https://doi.org/10.1152/ajprenal.00196.2005

    Article  CAS  Google Scholar 

  96. Schutgens F, Rookmaaker MB, Margaritis T, Rios A, Ammerlaan C, Jansen J, Gijzen L, Vormann M, Vonk A, Viveen M et al (2019) Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nat Biotechnol 37:303–313. https://doi.org/10.1038/s41587-019-0048-8

    Article  PubMed  CAS  Google Scholar 

  97. Sakolish CM, Philip B, Mahler GJ (2019) A human proximal tubule-on-a-chip to study renal disease and toxicity. Biomicrofluidics 13:14107. https://doi.org/10.1063/1.5083138

    Article  CAS  Google Scholar 

  98. Nieskens TTG, Sjögren AK (2019) Emerging in vitro systems to screen and predict drug-induced kidney toxicity. Semin Nephrol 39:215–226. https://doi.org/10.1016/j.semnephrol.2018.12.009

    Article  PubMed  CAS  Google Scholar 

  99. Musah S, Dimitrakakis N, Camacho DM, Church GM, Ingber DE (2018) Directed differentiation of human induced pluripotent stem cells into mature kidney podocytes and establishment of a glomerulus chip. Nat Protoc 13:1662–1685. https://doi.org/10.1038/s41596-018-0007-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Salmon JK, Armstrong CA, Ansel JC (1994) The skin as an immune organ. West J Med 160:146–152

    PubMed  PubMed Central  CAS  Google Scholar 

  101. Ponmozhi J, Dhinakaran S, Varga-Medveczky Z, Fonagy K, Bors LA, Ivan K, Erdo F (2021) Development of Skin-On-A-Chip platforms for different utilizations: factors to be considered. Micromachines (Basel) 12:294. https://doi.org/10.3390/mi12030294

    Article  PubMed  Google Scholar 

  102. Kim J, Kim K, Sung GY (2020) Coenzyme Q10 efficacy test for human skin equivalents using a pumpless Skin-on-a-Chip system. Int J Mol Sci 21(22). https://doi.org/10.3390/ijms21228475

  103. Matejuk A (2018) Skin Immunity. Arch Immunol Ther Exp 66:45–54. https://doi.org/10.1007/s00005-017-0477-3

    Article  CAS  Google Scholar 

  104. B.S. Baker, J.M. Ovigne, A.V. Powles, S. Corcoran, L. Fry, Normal keratinocytes express Toll-like receptors (TLRs) 1, 2 and 5: modulation of TLR expression in chronic plaque psoriasis, Br J Dermatol,148(4) (2003) 670–679. https://doi.org/10.1046/j.1365-2133.2003.05287. x.

  105. Sutterby E, Thurgood P, Baratchi S, Khoshmanesh K, Pirogova E (2020) Microfluidic Skin-on-a-chip models: toward biomimetic artificial skin. Small 16(39):2002515. https://doi.org/10.1002/smll.202002515

    Article  CAS  Google Scholar 

  106. O’Neill AT, Monteiro-Riviere NA, Walker GM (2008) Characterization of microfluidic human epidermal keratinocyte culture. Cytotechnology 56(3):197–207. https://doi.org/10.1007/s10616-008-9149-9

    Article  PubMed  PubMed Central  Google Scholar 

  107. Sriram G, Alberti M, Dancik Y, Wu B, Wu R, Feng Z, Ramasamy S, Bigliardi PL, Bigliardi QM, Wang Z (2018) Full-thickness human skin-on-chip with enhanced epidermal morphogenesis and barrier function. Mater Today 21(4):326–340. https://doi.org/10.1016/j.mattod.2017.11.002

    Article  CAS  Google Scholar 

  108. Abaci HE, Guo Z, Coffman A, Gillette B, Lee WH, Sia SK, Christiano AM (2016) Human skin constructs with spatially controlled vasculature using primary and iPSC-derived endothelial cells. Adv Healthc Mater 5:1800–1807. https://doi.org/10.1002/adhm.201500936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Mori N, Morimoto Y, Takeuchi S (2017) Skin integrated with perfusable vascular channels on a chip. Biomaterials 116:48–56. https://doi.org/10.1016/j.biomaterials.2016.11.031

    Article  PubMed  CAS  Google Scholar 

  110. Wufuer M, Lee G, Hur W, Jeon B, Kim BJ, Choi TH, Lee S (2016) Skin-on-a-chip model simulating inflammation, edema and drug-based treatment. Sci Rep 6:37471. https://doi.org/10.1038/srep37471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Ramadan Q, Ting FCW (2016) In vitro micro-physiological immune-competent model of the human skin. Lab Chip 16:1899–1908. https://doi.org/10.1039/C6LC00229C

    Article  PubMed  CAS  Google Scholar 

  112. Sung JH, Yu J, Luo D, Shuler ML, March JC (2011) Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab Chip 11:389–392. https://doi.org/10.1039/c0lc00273a

    Article  PubMed  CAS  Google Scholar 

  113. Thomas DP, Zhang J, Nguyen NT, Ta HT (2023) Microfluidic gut-on-a-chip: fundamentals and challenges. Biosensors 13:136. https://doi.org/10.3390/bios13010136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Y. Xiang, H. Wen, Y. Yu, M. Li, X. Fu, S. Huang, Gut-on-chip: recreating human intestine in vitro, J. Tissue Eng., 11 (2020), 2041731420965318. https://doi.org/10.1177/2041731420965318.

  115. Yeon JH, Park JK (2009) Drug permeability assay using microhole-trapped cells in a microfluidic device. Anal Chem 81(5):1944–1951. https://doi.org/10.1021/ac802351w

    Article  PubMed  CAS  Google Scholar 

  116. Villenave R, Wales SQ, Hamkins-Indik T, Papafragkou E, Weaver JC, Ferrante TC, Bahinski A, Elkins CA, Kulka M, Ingber DE (2017) Human Gut-on-a-Chip supports polarized infection of Coxsackie B1 virus in vitro. PLoS One 12:e0169412. https://doi.org/10.1371/journal.pone.0169412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Mahler GJ, Esch MB, Glahn RP, Shuler ML (2009) Characterization of a gastrointestinal tract microscale cell culture analog used to predict drug toxicity. Biotechnol Bioeng 104(1):193–205. https://doi.org/10.1002/bit.22366

    Article  PubMed  CAS  Google Scholar 

  118. McDermott AJ, Huffnagle GB (2014) The microbiome and regulation of mucosal immunity. Immunology 142(1):24–31. https://doi.org/10.1111/imm.12231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Kimura H, Yamamoto T, Sakai H, Sakai Y, Fujii T (2008) An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models. Lab Chip 8:741–746. https://doi.org/10.1039/B717091B

    Article  PubMed  CAS  Google Scholar 

  120. Kim HJ, Huh D, Hamilton G, Ingber DE (2012) Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12:2165–2174. https://doi.org/10.1039/C2LC40074J

    Article  PubMed  CAS  Google Scholar 

  121. Kim HJ, Ingber DE (2013) Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol 5(9):11–30. https://doi.org/10.1039/c3ib40126j

    Article  CAS  Google Scholar 

  122. Shim KY, Lee D, Han J, Nguyen NT, Park S, Sung JH (2017) Microfluidic gut-on-a-chip with three-dimensional villi structure. Biomed Microdevices 19(2):37. https://doi.org/10.1007/s10544-017-0179-y

    Article  PubMed  CAS  Google Scholar 

  123. Chou DB, Frismantas V, Milton Y et al (2020) On-chip recapitulation of clinical bone marrow toxicities and patient-specific pathophysiology. Nat Biomed Eng 4(4):394–406. https://doi.org/10.1038/s41551-019-0495-z

    Article  PubMed  PubMed Central  Google Scholar 

  124. Yu VWC, Scadden DT (2016) Hematopoietic stem cell and its bone marrow niche. Curr Top Dev Biol 118:21–44. https://doi.org/10.1016/bs.ctdb.2016.01.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Torisawa Y, Spina CS, Mammoto T, Mammoto A, Weaver JC, Tat T, Collins JJ, Ingber DE (2014) Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. Nat Methods 11:663–669. https://doi.org/10.1038/nmeth.2938

    Article  PubMed  CAS  Google Scholar 

  126. Mancini V, Pensabene V (2019) Organs-on-chip models of the female reproductive system. Bioengineering 6(4):103. https://doi.org/10.3390/bioengineering6040103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Wei-Xuan LI, Liang GT, Wei YAN, Zhang Q, Wei WANG, Xiao-Mian ZHOU, Da-Yu LIU (2013) Artificial uterus on a microfluidic chip. Chin J Anal Chem 41(4):467–472. https://doi.org/10.1016/S1872-2040(13)60639-8

    Article  Google Scholar 

  128. Blundell C, Tess ER, Schanzer AS, Coutifaris C, Su EJ, Parry S, Huh DA (2016) A microphysiological model of the human placental barrier. Lab Chip 16:3065–3073. https://doi.org/10.1039/C6LC00259E

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Lee JS, Romero R, Han YM, Kim HC, Kim CJ, Hong JS, Huh D (2016) Placenta- on-a-chip: A novel platform to study the biology of the human placenta. J Matern Fetal Neonatal Med 29(7):1046–1054. https://doi.org/10.3109/14767058.2015.1038518

    Article  PubMed  CAS  Google Scholar 

  130. Xiao S, Coppeta JR, Rogers HB, Isenberg BC, Zhu J, Olalekan SA, Malpani SS, Arnold-Murray CA, Chen K, Jiang M, Bai L, Nguyen CT, Zhang J, Laronda MM, Hope TJ, Maniar KP, Pavone ME, Avram MJ, Sefton EC et al (2017) A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nat Commun 8:14584. https://doi.org/10.1038/ncomms14584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Norwirz ER, Schust DJ, Fisher SJ (2001) Implantation and the survival of early pregnancy, N. Engl J Med 345(19):1400–1408. https://doi.org/10.1056/NEJMra000763

    Article  Google Scholar 

  132. Whisler JA, Chen MB, Kamm RD (2014) Control of perfusable microvascular network morphology using a multiculture microfluidic system. Tissue Eng C Methods 20:543–552. https://doi.org/10.1089/ten.tec.2013.0370

    Article  CAS  Google Scholar 

  133. Gude NM, Roberts CT, Kalionis B, King RG (2004) Growth and function of the normal human placenta. Thromb Res 114:397–407. https://doi.org/10.1016/j.thromres.2004.06.038

    Article  PubMed  CAS  Google Scholar 

  134. Park YK, Tu TY, Lim SH, Clement IJM, Yang SY, Kamm RD (2014) In vitro microvessel growth and remodeling within a three-dimensional microfluidic environment. Cell Mol Bioeng 7:15–25. https://doi.org/10.1007/s12195-013-0315-6

    Article  PubMed  Google Scholar 

  135. Abbas Y, Oefner CM, Polacheck WJ, Gardner L, Farrell L, Sharkey A, Kamm R, Moffett A, Oyen ML (2017) A microfluidics assay to study invasion of human placental trophoblast cells. J R Soc Interface 14. https://doi.org/10.1098/rsif.2017.0131

  136. Rodrigues RO, Sousa P, Rocha LA, Du J, Lima R, Minas G (2020) Organ-on-a-chip: a preclinical microfluidic platform for the progress of nanomedicine. Small 16(51):2003517. https://doi.org/10.1002/smll.202003517

    Article  CAS  Google Scholar 

  137. Palaninathan V, Kumar V, Maekawa T, Liepmann D, Paulmurugan R, Eswara JR, Ajayan PM, Augustine S, Malhotra BD, Viswanathan S, Renugopalakrishnan V, Kumar DS (2018) Multi-organ on a chip for personalized precision medicine. MRC 8(3):652–667. https://doi.org/10.1557/mrc.2018.148

    Article  CAS  Google Scholar 

  138. Zhao Y, Kankala RK, Wang SB, Chen AZ (2019) Multi-organs-on-chips: towards long-term biomedical investigations. Molecules 24(4):675. https://doi.org/10.3390/molecules24040675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. van Midwoud PM, Merema MT, Verpoorte E, Groothuis GMM (2010) A microfluidic approach for in vitro assessment of interorgan interactions in drug metabolism using intestinal and liver slices. Lab Chip 10:2778–2786. https://doi.org/10.1039/c0lc00043d

    Article  PubMed  CAS  Google Scholar 

  140. Tsamandouras N, Wen LKC, Edington CD, Stokes CL, Griffith LG, Cirit M (2017) Integrated gut and liver microphysiological systems for quantitative in vitro pharmacokinetic studies. AAPS J 19(5):1–14. https://doi.org/10.1208/s12248-017-0122-4

    Article  CAS  Google Scholar 

  141. Skardal A, Murphy SV, Devarasetty M, Mead I, Kang HW, Seol YJ, Zhang YS, Shin SR, Zhao L, Aleman J, Hall AR, Shupe TD, Kleensang A, Dokmeci MR, Lee SJ, Jackson JD, Yoo JJ, Hartung T, Khademhosseini A et al (2017) Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci Rep 7:8837. https://doi.org/10.1038/s41598-017-08879-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Maschmeyer I, Hasenberg T, Jaenicke A, Lindner M, Lorenz AK, Zech J, Garbe LA, Sonntag F, Hayden P, Ayehunie S, Lauster R, Marx U, Materne EM (2015) Chip-based human liver-intestine and liver-skin co-cultures—a first step toward systemic repeated dose substance testing in vitro. Eur J Pharm Biopharm 95:77–87. https://doi.org/10.1016/j.ejpb.2015.03.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Maschmeyer I, Lorenz AK, Schimek K, Hasenberg T, Ramme AP, Hübner J, Lindner M, Drewell C, Bauer S, Thomas A, Sambo NS, Sonntag F, Lauster R, Marx U (2015) A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip 15:2688–2699. https://doi.org/10.1039/c5lc00392j

    Article  PubMed  CAS  Google Scholar 

  144. Oleaga C, Bernabini C, Smith AST, Srinivasan B, Jackson M, McLamb W, Platt V, Bridges R, Cai Y, Santhanam N, Berry B, Najjar S, Akanda N, Guo X, Martin C, Ekman G, Esch MB, Langer J, Ouedraogo G et al (2016) Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci Rep 6:20030. https://doi.org/10.1038/srep20030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Edington CD, Chen WLK, Geishecker E, Kassis T, Soenksen LR, Bhushan BM, Freake D, Kirschner J, Maass C, Tsamandouras N, Valdez J, Cook CD, Parent T, Snyder S, Yu J, Suter E, Shockley M, Velazquez J, Velazquez JJ et al (2018) Interconnected microphysiological systems for quantitative biology and pharmacology studies. Sci Rep 8:4530. https://doi.org/10.1038/s41598-018-22749-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Jalili-Firoozinezhad S, Miranda CC, Cabral JMS (2021) Modeling the human body on microfluidic chips. Trends Biotechnol 39(8):838–852. https://doi.org/10.1016/j.tibtech.2021.01.004

    Article  PubMed  CAS  Google Scholar 

  147. An F, Qu Y, Liu X, Zhong R, Luo Y (2015) Organ-on-a-chip: new platform for biological analysis. Anal Chem Insights 10:39–45. https://doi.org/10.4137/aci.s28905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Singh D, Mathur A, Arora S, Roy S, Mahindroo N (2022) Journey of organ on a chip technology and its role in future healthcare scenario. Appl Surf Sci 9:100246. https://doi.org/10.1016/j.apsadv.2022.100246

    Article  Google Scholar 

  149. Lee H, Kim DS, Ha SK, Choi I, Lee JM, Sung JH (2017) A pumpless multi-organ-on-a-chip (MOC) combined with a pharmacokinetic-pharmacodynamic (PK-PD) model. Biotechnol Bioeng 114:432–443. https://doi.org/10.1002/bit.26087

    Article  PubMed  CAS  Google Scholar 

  150. Satoh T, Sugiura S, Shin K, Onuki-Nagasaki R, Ishida S, Kikuchi K, Kakiki M, Kanamori T (2017) A multi-throughput multiorgan-on-a-chip system on a plate formatted pneumatic pressure-driven medium circulation platform. Lab Chip 18:115–125. https://doi.org/10.1039/c7lc00952f

    Article  PubMed  CAS  Google Scholar 

  151. Lantada AD, Pfleging W, Besser H, Guttmann M, Wissmann M, Plewa K, Smyrek P, Piotter V, García-Ruíz JP (2018) Research on the methods for the mass production of multi-scale organs-on-chips. Polymers (Basel) 10(11):1238. https://doi.org/10.3390/polym10111238

    Article  CAS  Google Scholar 

  152. Dabbagh SR, Sarabi MR, Birtek MT, Mustafaoglu N, Zhang YS, Tasoglu S (2022) 3D Bioprinted Organ-On-Chips. Aggregate 4(1). https://doi.org/10.1002/agt2.197

  153. Miri AK, Mostafavi E, Khorsandi D, Hu SK, Malpica M, Khademhosseini A (2019) Bioprinters for Organs-On-Chips. Biofabrication 11(4):042002. https://doi.org/10.1088/1758-5090/ab2798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. He Y, Wu Y, Fu JZ, Gao Q (2016) Developments of 3D printing microfluidics and applications in chemistry and biology: a review. Electroanalysis 28(8):1658–1678. https://doi.org/10.1002/elan.201600043

    Article  CAS  Google Scholar 

  155. Galateanu B, Hudita A, Biru EL, Iovu H, Zaharia C, Simsensohn E, Costache M, Petca RC, Jinga V (2022) Applications of Polymers for Organ-On-Chip Technology in Urology. Polymers 14(9):1668–1668. https://doi.org/10.3390/polym14091668

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Yi HG, Lee H, Cho DW (2017) 3D printing of organs-on-chips. Bioengineering 4(4):10. https://doi.org/10.3390/bioengineering4010010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Groll J, Boland T, Blunk T, Burdick JA, Cho DW, Dalton PD, Derby B, Forgacs G, Li Q, Mironov VA, Moroni L, Nakamura M, Shu W, Takeuchi S, Vozzi G, Woodfield TBF, Xu T, Yoo JJ, Malda J (2016) Biofabrication: Reappraising the definition of an evolving field. Biofabrication 8(1):013001. https://doi.org/10.1088/1758-5090/8/1/013001

    Article  PubMed  CAS  Google Scholar 

  158. Lee V, Singh G, Trasatti JP, Bjornsson C, Xu X, Tran TN, Yoo SS, Dai G, Karande P (2013) Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods 20:473–484. https://doi.org/10.1089/ten.TEC.2013.0335

    Article  PubMed  PubMed Central  Google Scholar 

  159. Nguyen DG, Funk J, Robbins JB, Crogan-Grundy C, Presnell SC, Singer T, Roth AB (2016) Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro. PLoS One 11:e0158674. https://doi.org/10.1371/journal.pone.0158674

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Matsusaki M, Sakaue K, Kadowaki K, Akashi M (2013) Three-dimensional human tissue chips fabricated by rapid and automatic inkjet cell printing. Adv Healthc Mater 2(4):534–539. https://doi.org/10.1002/adhm.201200299

    Article  PubMed  CAS  Google Scholar 

  161. Knowlton S, Yenilmez B, Tasoglu S (2016) Towards single-step biofabrication of organs on a chip via 3D printing. Trends Biotechnol 34(9):685–688. https://doi.org/10.1016/j.tibtech.2016.06.005

    Article  PubMed  CAS  Google Scholar 

  162. Lee H, Cho DW (2016) One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology. Lab Chip 16:2618–2625. https://doi.org/10.1039/C6LC00450D

    Article  PubMed  CAS  Google Scholar 

  163. Bhise NS, Manoharan V, Massa S, Tamayol A, Ghaderi M, Miscuglio M, Lang Q, Zhang YS, Shin SR, Calzone G, Annabi N, Shupe TD, Bishop CE, Atala A, Dokmeci MR, Khademhosseini A (2016) A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication 8(1):014101. https://doi.org/10.1088/1758-5090/8/1/014101

    Article  PubMed  CAS  Google Scholar 

  164. Johnson BN, Lancaster KZ, Hoque IB, Meng F, Kong YL, Enquist LW, Mcalpine MC (2016) 3D printed nervous system on a chip. Lab Chip 16(8):1393–1400. https://doi.org/10.1039/c5lc01270h

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Homan KA, Kolesky DB, Skylar-Scott MA, Herrmann J, Obuobi H, Moisan A, Lewis JA (2016) bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci Rep 6:34845. https://doi.org/10.1038/srep34845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Galan EA, Zhao H, Wang X, Dai Q, Huck WTS, Ma S (2020) Intelligent microfluidics: the convergence of machine learning and microfluidics in materials science and biomedicine. Matter 3(6):1893–1922. https://doi.org/10.1016/j.matt.2020.08.034

    Article  Google Scholar 

  167. Mencattini A, Mattei F, Schiavoni G, Gerardino A, Businaro L, Natale CD, Martinelli E (2019) from petri dishes to organ on chip platform: the increasing importance of machine learning and image analysis. Front Pharmacol 10. https://doi.org/10.3389/fphar.2019.00100

  168. Li J, Chen J, Bai H, Wang H, Hao S, Ding Y, Peng B, Zhang J, Li L, Huang W (2022) An Overview of organs-on-chips based on deep learning. Research 2022. https://doi.org/10.34133/2022/9869518

  169. Mahdi Y, Daoud K (2017) Microdroplet size prediction in microfluidic systems via artificial neural network modeling for water-in-oil emulsion formulation. J Dispers Sci Technol 38(10):1501–1508

    Article  CAS  Google Scholar 

  170. Han S, Kim T, Kim D, Park YL, Jo S (2018) Use of deep learning for characterization of microfluidic soft sensors. IEEE Robot Autom Lett 3(2):873–880. https://doi.org/10.1109/LRA.2018.2792684

    Article  Google Scholar 

  171. Parlato S, Ninno AD, Molfetta R, Toschi E, Salerno D, Mencattini A, Romagnoli G, Fragale A, Roccazzello L, Buoncervello M, Canini I, Bentivegna E, Falchi M, Bertani FR, Gerardino A, Martinelli E, Natale C, Paolini R, Businaro L, Gabriele L (2017) 3D Microfluidic model for evaluating immunotherapy efficacy by tracking dendritic cell behavior toward tumor cells. Sci Rep 7(1):1093. https://doi.org/10.1038/s41598-017-01013-x

    Article  PubMed  PubMed Central  Google Scholar 

  172. Santbergen MJC, van der Zande M, Bouwmeester H, Nielen MWF (2019) Online and in situ analysis of organs-on-a-chip, TrAC, trends anal. Chem 115:138–146. https://doi.org/10.1016/j.trac.2019.04.006

    Article  CAS  Google Scholar 

  173. Cho S, Islas-Robles A, Nicolini AM, Monks TJ, Yoon JY (2016) In situ, dual-mode monitoring of organ-on-a-chip with smartphone-based fluorescence microscope. Biosens Bioelectron 86(15):697–705. https://doi.org/10.1016/j.bios.2016.07.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Sun H, Jia Y, Dong H, Dong D, Zheng J (2020) Combining additive manufacturing with microfluidics: an emerging method for developing novel organs-on-chips. Curr Opin Chem Eng 28:1–9. https://doi.org/10.1016/j.coche.2019.10.006

    Article  Google Scholar 

  175. Allen JW, Bhatia SN (2003) Formation of steady-state oxygen gradients in vitro: application to liver zonation. Biotechnol Bioeng 82(3):253–262. https://doi.org/10.1002/bit.10569

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dhiraj Kumar: methodology, literature review, investigation, data curation, result analysis, writing-original draft preparation. Rahul Nadda: methodology, investigation, data curation, writing-original draft preparation. Ramjee Repaka: methodology, reviewed, and edited.

Corresponding author

Correspondence to Rahul Nadda.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Nadda, R. & Repaka, R. Advances and challenges in organ-on-chip technology: toward mimicking human physiology and disease in vitro. Med Biol Eng Comput (2024). https://doi.org/10.1007/s11517-024-03062-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11517-024-03062-7

Keywords

Navigation