Skip to main content

Advertisement

Log in

Development and validation of a novel ankle joint musculoskeletal model

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

An improved understanding of contact mechanics in the ankle joint is paramount for implant design and ankle disorder treatment. However, existing models generally simplify the ankle joint as a revolute joint that cannot predict contact characteristics. The current study aimed to develop a novel musculoskeletal ankle joint model that can predict contact in the ankle joint, together with muscle and joint reaction forces. We modelled the ankle joint as a multi-axial joint and simulated contact mechanics between the tibia, fibula and talus bones in OpenSim. The developed model was validated with results from experimental studies through passive stiffness and contact. Through this, we found a similar ankle moment-rotation relationship and contact pattern between our study and experimental studies. Next, the musculoskeletal ankle joint model was incorporated into a lower body model to simulate gait. The ankle joint contact characteristics, kinematics, and muscle forces were predicted and compared to the literature. Our results revealed a comparable peak contact force and the same muscle activation patterns in four major muscles. Good agreement was also found in ankle dorsi/plantar-flexion and inversion/eversion. Thus, the developed model was able to accurately model the ankle joint and can be used to predict contact characteristics in gait.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References 

  1. Brockett CL, Chapman GJ (2016) Biomechanics of the ankle. Orthop. Trauma 30:232–238. https://doi.org/10.1016/j.mporth.2016.04.015

    Article  Google Scholar 

  2. Xu D, Zhou H, Quan W et al (2024) A new method proposed for realizing human gait pattern recognition: Inspirations for the application of sports and clinical gait analysis. Gait Posture 107:293–305. https://doi.org/10.1016/j.gaitpost.2023.10.019

    Article  PubMed  Google Scholar 

  3. Saraswat P, Andersen MS, Macwilliams BA (2010) A musculoskeletal foot model for clinical gait analysis. J Biomech 43:1645–1652. https://doi.org/10.1016/j.jbiomech.2010.03.005

    Article  PubMed  Google Scholar 

  4. Liu T, Jomha N, Adeeb S et al (2022) The evaluation of artificial talus implant on ankle joint contact characteristics: a finite element study based on four subjects. Med Biol Eng Comput. https://doi.org/10.1007/s11517-022-02527-x

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nichols JA, Roach KE, Fiorentino NM, Anderson AE (2017) Subject-Specific Axes of Rotation Based on Talar Morphology Do Not Improve Predictions of Tibiotalar and Subtalar Joint Kinematics. Ann Biomed Eng 45:2109–2121. https://doi.org/10.1007/s10439-017-1874-9

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nozaki S, Watanabe K, Kato T et al (2019) Radius of curvature at the talocrural joint surface: inference of subject-specific kinematics. Surg Radiol Anat 41:53–64. https://doi.org/10.1007/s00276-018-2098-x

    Article  PubMed  Google Scholar 

  7. Zhao D-H, Huang D-C, Zhang G-H et al (2019) Talar Dome Investigation and Talocrural Joint Axis Analysis Based on Three-Dimensional (3D) Models: Implications for Prosthetic Design. Biomed Res Int 2019:8634159. https://doi.org/10.1155/2019/8634159

    Article  PubMed  PubMed Central  Google Scholar 

  8. Peña Fernández M, Hoxha D, Chan O et al (2020) Centre of Rotation of the Human Subtalar Joint Using Weight-Bearing Clinical Computed Tomography. Sci Rep 10:1035. https://doi.org/10.1038/s41598-020-57912-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kovaleski JE, Heitman RJ, Gurchiek LR et al (2014) Joint stability characteristics of the ankle complex after lateral ligamentous injury, part I: a laboratory comparison using arthrometric measurement. J Athl Train 49:192–197. https://doi.org/10.4085/1062-6050-49.2.07

    Article  PubMed  PubMed Central  Google Scholar 

  10. Salb KN, Wido DM, Stewart TE, DiAngelo DJ (2016) Development of a Robotic Assembly for Analyzing the Instantaneous Axis of Rotation of the Foot Ankle Complex. Applied Bionics and Biomechanics 2016:e5985137. https://doi.org/10.1155/2016/5985137

    Article  Google Scholar 

  11. Siegler S, Chen J, Schneck CD (1988) The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joints–Part I: Kinematics. J Biomech Eng 110:364–373. https://doi.org/10.1115/1.3108455

    Article  CAS  PubMed  Google Scholar 

  12. Lewis GS, Cohen TL, Seisler AR et al (2009) In vivo tests of an improved method for functional location of the subtalar joint axis. J Biomech 42:146–151. https://doi.org/10.1016/j.jbiomech.2008.10.010

    Article  PubMed  Google Scholar 

  13. Mattingly B, Talwalkar V, Tylkowski C et al (2006) Three-dimensional in vivo motion of adult hind foot bones. J Biomech 39:726–733. https://doi.org/10.1016/j.jbiomech.2004.12.023

    Article  PubMed  Google Scholar 

  14. Sheehan FT (2010) The instantaneous helical axis of the subtalar and talocrural joints: a non-invasive in vivo dynamic study. Journal of Foot and Ankle Research 3:13. https://doi.org/10.1186/1757-1146-3-13

    Article  PubMed  PubMed Central  Google Scholar 

  15. Makki K, Borotikar B, Garetier M et al (2019) In vivo ankle joint kinematics from dynamic magnetic resonance imaging using a registration-based framework. J Biomech 86:193–203. https://doi.org/10.1016/j.jbiomech.2019.02.007

    Article  PubMed  Google Scholar 

  16. Oosterwaal M, Carbes S, Telfer S et al (2016) The Glasgow-Maastricht foot model, evaluation of a 26 segment kinematic model of the foot. J Foot Ankle Res 9:19. https://doi.org/10.1186/s13047-016-0152-7

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kim H, Kipp K (2019) Number of Segments Within Musculoskeletal Foot Models Influences Ankle Kinematics and Strains of Ligaments and Muscles. J Orthop Res 37:2231–2240. https://doi.org/10.1002/jor.24394

    Article  PubMed  Google Scholar 

  18. Xu D, Zhou H, Quan W et al (2023) Accurately and effectively predict the ACL force: Utilizing biomechanical landing pattern before and after-fatigue. Comput Methods Programs Biomed 241:107761. https://doi.org/10.1016/j.cmpb.2023.107761

    Article  PubMed  Google Scholar 

  19. Powell DW, Williams DSB, Butler RJ (2013) A comparison of two multisegment foot models in high-and low-arched athletes. J Am Podiatr Med Assoc 103:99–105. https://doi.org/10.7547/1030099

    Article  PubMed  Google Scholar 

  20. Twomey D, McIntosh AS, Simon J et al (2010) Kinematic differences between normal and low arched feet in children using the Heidelberg foot measurement method. Gait Posture 32:1–5. https://doi.org/10.1016/j.gaitpost.2010.01.021

    Article  CAS  PubMed  Google Scholar 

  21. Khazzam M, Long JT, Marks RM, Harris GF (2006) Preoperative gait characterization of patients with ankle arthrosis. Gait Posture 24:85–93. https://doi.org/10.1016/j.gaitpost.2005.07.006

    Article  PubMed  Google Scholar 

  22. Deschamps K, Matricali GA, Roosen P et al (2013) Comparison of foot segmental mobility and coupling during gait between patients with diabetes mellitus with and without neuropathy and adults without diabetes. Clin Biomech (Bristol, Avon) 28:813–819. https://doi.org/10.1016/j.clinbiomech.2013.06.008

    Article  CAS  PubMed  Google Scholar 

  23. Rao S, Saltzman CL, Yack HJ (2010) Relationships between segmental foot mobility and plantar loading in individuals with and without diabetes and neuropathy. Gait Posture 31:251–255. https://doi.org/10.1016/j.gaitpost.2009.10.016

    Article  PubMed  Google Scholar 

  24. Di Marco R, Rossi S, Racic V et al (2016) Concurrent repeatability and reproducibility analyses of four marker placement protocols for the foot-ankle complex. J Biomech 49:3168–3176. https://doi.org/10.1016/j.jbiomech.2016.07.041

    Article  PubMed  Google Scholar 

  25. Saraswat P, MacWilliams BA, Davis RB (2012) A multi-segment foot model based on anatomically registered technical coordinate systems: method repeatability in pediatric feet. Gait Posture 35:547–555. https://doi.org/10.1016/j.gaitpost.2011.11.022

    Article  PubMed  Google Scholar 

  26. Stebbins J, Harrington M, Thompson N et al (2006) Repeatability of a model for measuring multi-segment foot kinematics in children. Gait Posture 23:401–410. https://doi.org/10.1016/j.gaitpost.2005.03.002

    Article  CAS  PubMed  Google Scholar 

  27. Damsgaard M, Rasmussen J, Christensen ST et al (2006) Analysis of musculoskeletal systems in the AnyBody Modeling System. Simul Model Pract Theory 14:1100–1111. https://doi.org/10.1016/j.simpat.2006.09.001

    Article  Google Scholar 

  28. Carbone V, Fluit R, Pellikaan P et al (2015) TLEM 2.0 - a comprehensive musculoskeletal geometry dataset for subject-specific modeling of lower extremity. J Biomech 48:734–741. https://doi.org/10.1016/j.jbiomech.2014.12.034

    Article  CAS  PubMed  Google Scholar 

  29. Delp SL, Loan JP, Hoy MG et al (1990) An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans Biomed Eng 37:757–767. https://doi.org/10.1109/10.102791

    Article  CAS  PubMed  Google Scholar 

  30. Klein Horsman MD, Koopman HFJM, van der Helm FCT et al (2007) Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity. Clin Biomech 22:239–247. https://doi.org/10.1016/j.clinbiomech.2006.10.003

    Article  CAS  Google Scholar 

  31. Skipper Andersen M, de Zee M, Damsgaard M et al (2017) Introduction to force-dependent kinematics: theory and application to mandible modeling. J Biomech Eng 139. https://doi.org/10.1115/1.4037100

  32. Brandon SCE, Smith CR, Thelen DG (2017) Simulation of Soft Tissue Loading from Observed Movement Dynamics. In: Müller B, Wolf SI, Brueggemann G-P et al (eds) Handbook of Human Motion. Springer International Publishing, Cham, pp 1–34

    Google Scholar 

  33. Thelen DG, Won Choi K, Schmitz AM (2014) Co-simulation of neuromuscular dynamics and knee mechanics during human walking. J Biomech Eng 136:021033. https://doi.org/10.1115/1.4026358

    Article  PubMed  Google Scholar 

  34. Smith CR, Brandon SCE, Thelen DG (2019) Can altered neuromuscular coordination restore soft tissue loading patterns in anterior cruciate ligament and menisci deficient knees during walking? J Biomech 82:124–133. https://doi.org/10.1016/j.jbiomech.2018.10.008

    Article  PubMed  Google Scholar 

  35. Delp SL, Anderson FC, Arnold AS et al (2007) OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement. IEEE Trans Biomed Eng 54:1940–1950. https://doi.org/10.1109/TBME.2007.901024

    Article  PubMed  Google Scholar 

  36. Smith CR, Lenhart RL, Kaiser J et al (2016) Influence of Ligament Properties on Knee Mechanics in Walking. J Knee Surg 29:99–106. https://doi.org/10.1055/s-0035-1558858

    Article  PubMed  Google Scholar 

  37. Anderson DD, Goldsworthy JK, Shivanna K et al (2006) Intra-articular contact stress distributions at the ankle throughout stance phase-patient-specific finite element analysis as a metric of degeneration propensity. Biomech Model Mechanobiol 5:82–89. https://doi.org/10.1007/s10237-006-0025-2

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wan L, de Asla RJ, Rubash HE, Li G (2006) Determination of in-vivo articular cartilage contact areas of human talocrural joint under weightbearing conditions. Osteoarthritis Cartilage 14:1294–1301. https://doi.org/10.1016/j.joca.2006.05.012

    Article  CAS  PubMed  Google Scholar 

  39. Liu T, Ead M, Cruz SDV et al (2022) Polycarbonate-urethane coating can significantly improve talus implant contact characteristics. J Mech Behav Biomed Mater 125:104936. https://doi.org/10.1016/j.jmbbm.2021.104936

    Article  CAS  PubMed  Google Scholar 

  40. Bei Y, Fregly BJ (2004) Multibody dynamic simulation of knee contact mechanics. Med Eng Phys 26:777–789. https://doi.org/10.1016/j.medengphy.2004.07.004

    Article  PubMed  PubMed Central  Google Scholar 

  41. Smith CR, Choi KW, Negrut D, Thelen DG (2018) Efficient Computation of Cartilage Contact Pressures within Dynamic Simulations of Movement. Comput Methods Biomech Biomed Eng Imaging Vis 6:491–498. https://doi.org/10.1080/21681163.2016.1172346

    Article  PubMed  Google Scholar 

  42. Anderson DD, Tochigi Y, Rudert MJ et al (2010) Effect of implantation accuracy on ankle contact mechanics with a metallic focal resurfacing implant. J Bone Joint Surg Am 92:1490–1500. https://doi.org/10.2106/JBJS.I.00431

    Article  PubMed  PubMed Central  Google Scholar 

  43. Anderson FC, Pandy MG (2001) Dynamic optimization of human walking. J Biomech Eng 123:381–390. https://doi.org/10.1115/1.1392310

    Article  CAS  PubMed  Google Scholar 

  44. Friederich JA, Brand RA (1990) Muscle fiber architecture in the human lower limb. J Biomech 23:91–95. https://doi.org/10.1016/0021-9290(90)90373-b

    Article  CAS  PubMed  Google Scholar 

  45. Valente G, Crimi G, Vanella N et al (2017) nmsBuilder: Freeware to create subject-specific musculoskeletal models for OpenSim. Comput Methods Programs Biomed 152:85–92. https://doi.org/10.1016/j.cmpb.2017.09.012

    Article  PubMed  Google Scholar 

  46. Golanó P, Vega J, de Leeuw PAJ et al (2010) Anatomy of the ankle ligaments: a pictorial essay. Knee Surg Sports Traumatol Arthrosc 18:557–569. https://doi.org/10.1007/s00167-010-1100-x

    Article  PubMed  PubMed Central  Google Scholar 

  47. Patil V, Ebraheim N, Wagner R, Owens C (2008) Morphometric dimensions of the dorsal calcaneocuboid ligament. Foot Ankle Int 29:508–512. https://doi.org/10.3113/FAI-2008-0508

    Article  PubMed  Google Scholar 

  48. Funk JR, Hall GW, Crandall JR, Pilkey WD (2000) Linear and quasi-linear viscoelastic characterization of ankle ligaments. J Biomech Eng 122:15–22. https://doi.org/10.1115/1.429623

    Article  CAS  PubMed  Google Scholar 

  49. Nie B, Panzer MB, Mane A et al (2016) A framework for parametric modeling of ankle ligaments to determine the in situ response under gross foot motion. Comput Methods Biomech Biomed Engin 19:1254–1265. https://doi.org/10.1080/10255842.2015.1125474

    Article  PubMed  Google Scholar 

  50. Chen J, Siegler S, Schneck CD (1988) The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joint–Part II: Flexibility characteristics. J Biomech Eng 110:374–385. https://doi.org/10.1115/1.3108456

    Article  CAS  PubMed  Google Scholar 

  51. Anderson DD, Goldsworthy JK, Li W et al (2007) Physical validation of a patient-specific contact finite element model of the ankle. J Biomech 40:1662–1669. https://doi.org/10.1016/j.jbiomech.2007.01.024

    Article  PubMed  PubMed Central  Google Scholar 

  52. John CT, Anderson FC, Higginson JS, Delp SL (2013) Stabilization of walking by intrinsic muscle properties revealed in a three-dimensional muscle-driven simulation. Comput Methods Biomech Biomed Engin 16:451–462. https://doi.org/10.1080/10255842.2011.627560

    Article  PubMed  Google Scholar 

  53. Liu MQ, Anderson FC, Schwartz MH, Delp SL (2008) Muscle contributions to support and progression over a range of walking speeds. J Biomech 41:3243–3252. https://doi.org/10.1016/j.jbiomech.2008.07.031

    Article  PubMed  PubMed Central  Google Scholar 

  54. Malaquias TM, Silveira C, Aerts W et al (2017) Extended foot-ankle musculoskeletal models for application in movement analysis. Comput Methods Biomech Biomed Engin 20:153–159. https://doi.org/10.1080/10255842.2016.1206533

    Article  PubMed  Google Scholar 

  55. Wang C, Yang J, Wang S et al (2015) Three-dimensional motions of distal syndesmosis during walking. J Orthop Surg Res 10:166. https://doi.org/10.1186/s13018-015-0306-5

    Article  PubMed  PubMed Central  Google Scholar 

  56. Baggett BD, Young G (1993) Ankle joint dorsiflexion. Establishment of a normal range. J Am Podiatr Med Assoc 83:251–254. https://doi.org/10.7547/87507315-83-5-251

    Article  CAS  PubMed  Google Scholar 

  57. Abraham CL, Maas SA, Weiss JA et al (2013) A new discrete element analysis method for predicting hip joint contact stresses. J Biomech 46:1121–1127. https://doi.org/10.1016/j.jbiomech.2013.01.012

    Article  PubMed  PubMed Central  Google Scholar 

  58. Guess TM, Liu H, Bhashyam S, Thiagarajan G (2013) A multibody knee model with discrete cartilage prediction of tibio-femoral contact mechanics. Comput Methods Biomech Biomed Engin 16:256–270. https://doi.org/10.1080/10255842.2011.617004

    Article  PubMed  Google Scholar 

  59. Grimston SK, Nigg BM, Hanley DA, Engsberg JR (1993) Differences in ankle joint complex range of motion as a function of age. Foot Ankle 14:215–222. https://doi.org/10.1177/107110079301400407

    Article  CAS  PubMed  Google Scholar 

  60. Prinold JAI, Mazzà C, Di Marco R et al (2016) A Patient-Specific Foot Model for the Estimate of Ankle Joint Forces in Patients with Juvenile Idiopathic Arthritis. Ann Biomed Eng 44:247–257. https://doi.org/10.1007/s10439-015-1451-z

    Article  PubMed  Google Scholar 

  61. Procter P, Paul JP (1982) Ankle joint biomechanics. J Biomech 15:627–634. https://doi.org/10.1016/0021-9290(82)90017-3

    Article  CAS  PubMed  Google Scholar 

  62. Crandall J, Portier L, Petit P, Hall G et al (1996) Biomechanical response and physical properties of the leg, foot, and ankle. SAE Technical Paper 962424. https://doi.org/10.4271/962424

  63. Takebe K, Nakagawa A, Minami H, et al (1984) Role of the fibula in weight-bearing. Clin Orthop Relat Res 289–292. https://doi.org/10.1097/00003086-198404000-00047

Download references

Acknowledgements

The current study was funded by the Edmonton Orthopaedic Research Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Liu.

Ethics declarations

Conflict of interest statement

All authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 

Appendix 

Tables 1 and 2.

Table 1 Inertial parameters for the body segments included in the model (adopted from Anderson and Pandy (1999))
Table 2 Properties of ligaments included in the model

(The ligament model used is based on the work of Blankevoort et al., (1991). The unit of stiffness is newton per unit of strain. Transition strain has the unit of strain. Slack length is in meter).

Figures 7 and 8

Fig. 7
figure 7

Variations of ligament force during gait

Fig. 8
figure 8

Three translational movements of talus during gait (positive X is in anterior direction, positive Y is in superior direction, positive Z is in lateral direction)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Dimitrov, A., Jomha, N. et al. Development and validation of a novel ankle joint musculoskeletal model. Med Biol Eng Comput 62, 1395–1407 (2024). https://doi.org/10.1007/s11517-023-03010-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-03010-x

Keywords

Navigation