Skip to main content
Log in

Automatic segmentation of brain glioma based on XY-Net

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Glioma is a malignant primary brain tumor, which can easily lead to death if it is not detected in time. Magnetic resonance imaging is the most commonly used technique to diagnose gliomas, and precise outlining of tumor areas from magnetic resonance images (MRIs) is an important aid to physicians in understanding the patient’s condition and formulating treatment plans. However, relying on radiologists to manually depict tumors is a tedious and laborious task, so it is clinically important to investigate an automated method for outlining glioma regions in MRIs. To liberate radiologists from the heavy task of outlining tumors, we propose a fully convolutional network, XY-Net, based on the most popular U-Net symmetric encoder-decoder structure to perform automatic segmentation of gliomas. We construct two symmetric sub-encoders for XY-Net and build interconnected X-shaped feature map transmission paths between the sub-encoders, while maintaining the feature map concatenation between each sub-encoder and the decoder. Moreover, a loss function composed of the balanced cross-entropy loss function and the dice loss function is used in the training task of XY-Net to solve the class unevenness problem of the medical image segmentation task. The experimental results show that the proposed XY-Net has a 2.16% improvement in dice coefficient (DC) compared to the network model with a single encoder structure, and compare with some state-of-the-art image segmentation methods, XY-Net achieves the best performance. The DC, HD, recall, and precision of our method on the test set are 74.49%, 10.89 mm, 78.06%, and 76.30%, respectively. The combination of sub-encoders and cross-transmission paths enables the model to perform better; based on this combination, the XY-Net achieves an end-to-end automatic segmentation of gliomas on 2D slices of MRIs, which can play a certain auxiliary role for doctors in grasping the state of illness.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html

References

  1. Hussain S, Anwar SM, Majid M (2018) Segmentation of glioma tumors in brain using deep convolutional neural network. Neurocomputing 282:248–261. https://doi.org/10.1016/j.neucom.2017.12.032

    Article  Google Scholar 

  2. Gomez-Guzman MA, Jimenez-Beristain L, Garcia-Guerrero EE, Lopez-Bonilla OR, Tamayo-Perez UJ, Esqueda-Elizondo JJ, Palomino-Vizcaino K, Inzunza-Gonzalez E (2023) Classifying brain tumors on magnetic resonance imaging by using convolutional neural networks. Electronics-Switz 12(4):955. https://doi.org/10.3390/electronics12040955

    Article  Google Scholar 

  3. Bauer S, Wiest R, Nolte L, Reyes M (2013) A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol 58(13):R97–R129. https://doi.org/10.1088/0031-9155/58/13/R97

    Article  PubMed  Google Scholar 

  4. Wen PY, Huse JT (2017) 2016 world health organization classification of central nervous system tumors. Continuum (Minneapolis, Minn.) Lifelong Learning in Neurology 23(6):1531–1547. https://doi.org/10.1212/CON.0000000000000536

  5. Yang K, Wu Z, Zhang H, Zhang N, Wu W, Wang Z, Dai Z, Zhang X, Zhang L, Peng Y et al (2022) Glioma targeted therapy: insight into future of molecular approaches. Mol Cancer 21(1):1–32. https://doi.org/10.1186/s12943-022-01513-z

    Article  CAS  Google Scholar 

  6. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  7. Aghalari M, Aghagolzadeh A, Ezoji M (2021) Brain tumor image segmentation via asymmetric/symmetric UNet based on two-pathway-residual blocks. Biomed Signal Proces 69:102841. https://doi.org/10.1016/j.bspc.2021.102841

  8. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin P, Larochelle H (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31. https://doi.org/10.1016/j.media.2016.05.004

    Article  PubMed  Google Scholar 

  9. Iqbal S, Ghani MU, Saba T, Rehman A (2018) Brain tumor segmentation in multi-spectral MRI using convolutional neural networks (CNN). Microsc Res Techniq 81(4):419–427. https://doi.org/10.1002/jemt.22994

    Article  Google Scholar 

  10. Zhang J, Zhao L, Zeng J, Qin P, Wang Y, Yu X (2022) Deep MRI glioma segmentation via multiple guidances and hybrid enhanced-gradient cross-entropy loss. Expert Syst Appl 196:116608. https://doi.org/10.1016/j.eswa.2022.116608

  11. Zhang TC, Zhang J, Chen SC, Saada B (2022) A novel prediction model for brain glioma image segmentation based on the theory of Bose-Einstein condensate. Front Med 9:794125. https://www.frontiersin.org/articles/10.3389/fmed.2022.794125https://doi.org/10.3389/fmed.2022.794125

  12. Sauwen N, Acou M, Sima DM, Veraart J, Maes F, Himmelreich U, Achten E, Van Huffel S (2017) Semi-automated brain tumor segmentation on multi-parametric MRI using regularized non-negative matrix factorization. Bmc Med Imaging 17(29). https://doi.org/10.1186/s12880-017-0198-4

  13. Wu Y, Zhao Z, Wu W, Lin Y, Wang M (2019) Automatic glioma segmentation based on adaptive superpixel. Bmc Med Imaging 19:73. https://doi.org/10.1186/s12880-019-0369-6

  14. Saeed MU, Ali G, Bin W, Almotiri SH, Alghamdi MA, Nagra AA, Masood K, Ul Amin R (2021) RMU-Net: a novel residual mobile u-net model for brain tumor segmentation from mr images. Electronics-Switz 10:1962. https://doi.org/10.3390/electronics10161962

  15. Dickson S, Thomas BT, Goddard P (1997) Using neural networks to automatically detect brain tumours in MR images. Int J Neural Syst 8(1):91–99. https://doi.org/10.1142/S0129065797000124

    Article  PubMed  CAS  Google Scholar 

  16. Clark MC, Hall LO, Goldgof DB, Velthuizen R, Murtagh FR, Silbiger MS (1998) Automatic tumor segmentation using knowledge-based techniques. IEEE T Med Imaging 17(2):187–201. https://doi.org/10.1109/42.700731

    Article  CAS  Google Scholar 

  17. Güngör A, Dar SU, Öztürk S, Korkmaz Y, Bedel HA, Elmas G, Ozbey M, Çukur T (2023) Adaptive diffusion priors for accelerated MRI reconstruction. Med Image Anal 88:102872. https://doi.org/10.1016/j.media.2023.102872

    Article  PubMed  Google Scholar 

  18. Anwar SM, Majid M, Qayyum A, Awais M, Alnowami M, Khan MK (2018) Medical image analysis using convolutional neural networks: a review. J Med Syst 42:226. https://doi.org/10.1007/s10916-018-1088-1

  19. Özbey M, Dalmaz O, Dar SU, Bedel HA, Özturk S, Güngör A, Çukur T (2023) Unsupervised medical image translation with adversarial diffusion models. IEEE T Med Imaging 1. https://doi.org/10.1109/TMI.2023.3290149

  20. Öztürk S, Çelik E, Çukur T (2023) Content-based medical image retrieval with opponent class adaptive margin loss. Inform Sci 637:118938. https://doi.org/10.1016/j.ins.2023.118938

    Article  Google Scholar 

  21. Emblem KE, Nedregaard B, Hald JK, Nome T, Due-Tonnessen P, Bjornerud A (2009) Automatic glioma characterization from dynamic susceptibility contrast imaging: brain tumor segmentation using knowledge-based fuzzy clustering. J Magn Reson Imaging 30(1):1–10. https://doi.org/10.1002/jmri.21815

    Article  PubMed  Google Scholar 

  22. Kazerooni AF, Mohseni M, Rezaei S, Bakhshandehpour G, Rad HS (2015) Multi-parametric (ADC/PW/T2-w) image fusion approach for accurate semi-automatic segmentation of tumorous regions in glioblastoma multiforme. Magn Reson Mater Phy 28(1):13–22. https://doi.org/10.1007/s10334-014-0442-7

    Article  Google Scholar 

  23. Tustison NJ, Shrinidhi KL, Wintermark M, Durst CR, Kandel BM, Gee JC, Grossman MC, Avants BB (2015) Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Neuroinformatics 13(2):209–225. https://doi.org/10.1007/s12021-014-9245-2

    Article  PubMed  Google Scholar 

  24. Bonte S, Goethals I, Van Holen R (2018) Machine learning based brain tumour segmentation on limited data using local texture and abnormality. Comput Biol Med 98:39–47. https://doi.org/10.1016/j.compbiomed.2018.05.005

    Article  PubMed  Google Scholar 

  25. Zikic D, Glocker B, Konukoglu E, Criminisi A, Demiralp C, Shotton J, Thomas OM, Das T, Jena R, Price SJ (2012) Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. Med Image Comput Comput-Assist Interv – MICCAI 2012 PT III 7512:369–376

    Google Scholar 

  26. Hesamian MH, Jia W, He X, Kennedy P (2019) Deep learning techniques for medical image segmentation: achievements and challenges. J Digit Imaging 32(4):582–596. https://doi.org/10.1007/s10278-019-00227-x

    Article  PubMed  PubMed Central  Google Scholar 

  27. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sanchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88. https://doi.org/10.1016/j.media.2017.07.005

    Article  PubMed  Google Scholar 

  28. Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. Med Image Comput Comput-Assist Interv PT III 9351:234–241. https://doi.org/10.1007/978-3-319-24574-4_28

    Article  Google Scholar 

  29. Buda M, Saha A, Mazurowski MA (2019) Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm. Comput Biol Med 109:218–225. https://doi.org/10.1016/j.compbiomed.2019.05.002

    Article  PubMed  CAS  Google Scholar 

  30. Dong H, Yang G, Liu F, Mo Y, Guo Y (2017) Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks. Springer International Publishing, Cham, pp 506–517. https://doi.org/10.1007/978-3-319-60964-5_44

  31. Naser MA, Deen MJ (2020) Brain tumor segmentation and grading of lower-grade glioma using deep learning in MRI images. Comput Biol Med 121:103758. https://doi.org/10.1016/j.compbiomed.2020.103758

    Article  PubMed  Google Scholar 

  32. Kermi A, Mahmoudi I, Khadir MT (2019) Deep convolutional neural networks using U-Net for automatic brain tumor segmentation in multimodal MRI volumes. Brainlesion: Glioma Mult Scler Stroke Trauma Brain Injuries Brainles 2018 PT II 11384:37–48. https://doi.org/10.1007/978-3-030-11726-9_4

    Article  Google Scholar 

  33. Zhao X, Wu Y, Song G, Li Z, Zhang Y, Fan Y (2018) A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Med Image Anal 43:98–111. https://doi.org/10.1016/j.media.2017.10.002

    Article  PubMed  Google Scholar 

  34. Liu Z, Tong L, Chen L, Zhou F, Jiang Z, Zhang Q, Wang Y, Shan C, Li L, Zhou H (2021) CANet: context aware network for brain glioma segmentation. IEEE T Med Imaging 40(7):1763–1777. https://doi.org/10.1109/TMI.2021.3065918

    Article  Google Scholar 

  35. Hu Z, Li L, Sui A, Wu G, Wang Y, Yu J (2023) An efficient r-transformer network with dual encoders for brain glioma segmentation in MR images. Biomed Signal Proces 79:104034. https://doi.org/10.1016/j.bspc.2022.104034

    Article  Google Scholar 

  36. Hussain SS, Sachdeva J, Ahuja CK, Singh A (2023) Enc-Unet: a novel method for glioma segmentation. Int J Imag Syst Tech 33(2):465–482. https://doi.org/10.1002/ima.22822

    Article  Google Scholar 

  37. Liu X, Hou S, Liu S, Ding W, Zhang Y (2023) Attention-based multimodal glioma segmentation with multi-attention layers for small-intensity dissimilarity. J King Saud Univ – Comput Inf Sci 35(4):183–195. https://doi.org/10.1016/j.jksuci.2023.03.011

    Article  Google Scholar 

  38. Clerigues A, Valverde S, Bernal J, Freixenet J, Oliver A, Llado X (2020) Acute and sub-acute stroke lesion segmentation from multimodal MRI. Comput Meth Prog Bio 194:105521. https://www.sciencedirect.com/science/article/pii/S0169260719305899https://doi.org/10.1016/j.cmpb.2020.105521

  39. AsgariTaghanaki S, Abhishek K, Cohen JP, Cohen-Adad J, Hamarneh G (2021) Deep semantic segmentation of natural and medical images: a review. Artif Intell Rev 54(1):137–178. https://doi.org/10.1007/s10462-020-09854-1

    Article  Google Scholar 

  40. Xie S, Tu Z (2015) Holistically-nested edge detection. 2015 IEEE Int Conf Comp Vis (ICCV) pp 1395–1403. https://doi.org/10.1109/ICCV.2015.164

  41. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302

    Article  Google Scholar 

  42. Sudre CH, Li W, Vercauteren T, Ourselin S, Jorge Cardoso M (2017) Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations deep learning in medical image analysis and multimodal learning for clinical decision support. Springer, pp 240–248

  43. Shen H, Zhang J, Zheng W (2017) Efficient symmetry-driven fully convolutional network for multimodal brain tumor segmentation. 2017 IEEE Int Conf Image Process (ICIP) pp 3864–3868. https://doi.org/10.1109/ICIP.2017.8297006

  44. Tran AT, Pham TB (2019) Brain tumor segmentation using bit-plane and UNET. Brainlesion: Glioma Mult Scler Stroke Trauma Brain Injuries Brainles 2018 PT II 11384:466–475. https://doi.org/10.1007/978-3-030-11726-9_41

    Article  Google Scholar 

  45. Huttenlocher DP, Klanderman GA, Rucklidge WJ (1993) Comparing images using the Hausdorff distance. IEEE T Pattern Anal 15(9):850–863. https://doi.org/10.1109/34.232073

    Article  Google Scholar 

  46. Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980

  47. Badrinarayanan V, Kendall A, Cipolla R (2017) SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE T Pattern Anal 39(12):2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615

    Article  Google Scholar 

  48. Schlemper J, Oktay O, Schaap M, Heinrich M, Kainz B, Glocker B, Rueckert D (2019) Attention gated networks: learning to leverage salient regions in medical images. Med Image Anal 53:197–207. https://doi.org/10.1016/j.media.2019.01.012

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J (2020) UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE T Med Imaging 39(6):1856–1867. https://doi.org/10.1109/TMI.2019.2959609

    Article  Google Scholar 

  50. Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78. https://doi.org/10.1016/j.media.2016.10.004

    Article  PubMed  Google Scholar 

  51. Myronenko A (2018) 3D MRI brain tumor segmentation using autoencoder regularization. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing, Cham, pp 311–320. https://doi.org/10.1007/978-3-030-11726-9_28

  52. Piraud M, Sekuboyina A, Menze BH (2018) Multi-level activation for segmentation of hierarchically-nested classes. Proceedings of the Eur Conf Comp Vis (ECCV) workshops

  53. Chen W, Liu B, Peng S, Sun J, Qiao X (2018) S3D-Unet: separable 3d u-net for brain tumor segmentation. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing, Cham, pp 358–368

  54. Zhang R, Zhao L, Lou W, Abrigo JM, Mok VC, Chu WC, Wang D, Shi L (2018) Automatic segmentation of acute ischemic stroke from DWI using 3-d fully convolutional DenseNets. IEEE T Med Imaging 37(9):2149–2160. https://doi.org/10.1109/TMI.2018.2821244

    Article  Google Scholar 

  55. Karthik R, Menaka R, Hariharan M, Won D (2021) Ischemic lesion segmentation using ensemble of multi-scale region aligned CNN. Comput Meth Prog Bio 200:105831. https://doi.org/10.1016/j.cmpb.2020.105831

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Funding of the National Natural Science Foundation of China (Grant No. 61863027), Jiangxi Provincial Natural Science Foundation (Grant No. 20202BABL206112), and the Key Research and Development Plan of Jiangxi Province (Grant No. 20202BBGL73057).

Author information

Authors and Affiliations

Authors

Contributions

Wenbin Xu carried out data collection, experimental design, and manuscript drafting. Jizhong Liu and Bing Fan participated in the data collection, helped to design the work, and revised the final version of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jizhong Liu or Bing Fan.

Ethics declarations

Ethics approval and consent to participate

Ethical approval for this investigation was obtained from the Research Ethics Committee of Jiangxi Provincial People’s Hospital, and the reference number was 2019–051.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Liu, J. & Fan, B. Automatic segmentation of brain glioma based on XY-Net. Med Biol Eng Comput 62, 153–166 (2024). https://doi.org/10.1007/s11517-023-02927-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02927-7

Keywords

Navigation