Skip to main content
Log in

Automated method for real-time AMD screening of fundus images dedicated for mobile devices

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Aged macular degeneration (AMD) leads to a progressive decline in visual acuity until reaching blindness. It is considered as an irreversible pathology where an early diagnosis remains crucial. However, the lack of ophthalmologists, the permanent increase in elderly people, and their limited mobility involves a delay in AMD diagnosis. In this paper, we propose an automated method for AMD screening. The proposed processing pipeline consists in applying the well-known Radon transform to the macula region in order to model the AMD lesions even with a moderate quality of smartphone-captured fundus images. Thereby, the relevant features are carefully selected, related to the main proprieties of drusens, and then provided to an SVM classifier. The implementation of the method into a smartphone associated to a fundus image capturing device leads to a mobile CAD system that performs higher performance AMD screening. Within this framework and to achieve a real-time implementation, an optimization approach is suggested in order to reduce the processing workload. The evaluation of our method is carried out through the three public STARE, REFUGE, and RFMiD databases. A 4-fold cross-validation approach is used to evaluate the method performance where accuracies of 100%, 95.2%, and 94.3% are respectively obtained with STARE, REFUGE, and RFMiD databases. Comparisons with the state-of-the-art methods in the literature are done. Thereafter, the robustness of the proposed method was evaluated and proved. We note that 100% accuracy was preserved despite the use of degraded quality fundus images as noisy and blurred. Moreover, the propounded method was implemented in S7-Edge and S9 Smartphone devices, where the execution times of 19 and 15 milliseconds were respectively achieved, which proves the AMD real-time detection. Taking advantage of its mobility, cost-effective, detection performance, and reduced execution time, our proposed method seems a good solution for real-time AMD screening on mobile devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Mookiah MRK, Acharya UR, Fujita H, Koh JEW, Tan JH, Chua CK et al (2015) Automated detection of age-related macular degeneration using empirical mode decomposition. Knowledge-Based Systems 89:654–668. https://doi.org/10.1016/j.knosys.2015.09.012

    Article  Google Scholar 

  2. Mookiah MRK, Acharya UR, Fujita H, Koh JEW, Tan JH, Noronha K et al (2015) Local configuration pattern features for age-related macular degeneration characterization and classification. Computers in Biology and Medicine 63:208–218. https://doi.org/10.1016/j.compbiomed.2015.05.019

    Article  PubMed  Google Scholar 

  3. Wong WL, Su X, Li X, Cheung CMG, Klein R, Cheng C-Y, Wong TY (2014) Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. The Lancet Global Health 2(2):e106–e116. https://doi.org/10.1016/S2214-109X(13)70145-1

    Article  PubMed  Google Scholar 

  4. Köse C, Şevik U, Gençalioğlu O, İkibaş C, Kayıkıçıoğlu T (2010) A statistical segmentation method for measuring age-related macular degeneration in retinal fundus images. Journal of Medical Systems 34(1):1–13. https://doi.org/10.1007/s10916-008-9210-4

    Article  PubMed  Google Scholar 

  5. Pead E, Megaw R, Cameron J, Fleming A, Dhillon B, Trucco E, MacGillivray T (2019) Automated detection of age-related macular degeneration in color fundus photography: a systematic review. Survey of Ophthalmology 64(4):498–511. https://doi.org/10.1016/j.survophthal.2019.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  6. Köse C, Şevik U, Gençalioğlu O (2008) Automatic segmentation of age-related macular degeneration in retinal fundus images. Computers in Biology and Medicine 38(5):611–619. https://doi.org/10.1016/j.compbiomed.2008.02.008

    Article  PubMed  Google Scholar 

  7. Remeseiro, B., Barreira, N., Calvo, D., Ortega, M., & Penedo, M. G. (2009). Automatic drusen detection from digital retinal images: AMD prevention. In R. Moreno-Díaz, F. Pichler, & A. Quesada-Arencibia (Eds.), Computer Aided Systems Theory EUROCAST 2009 (pp. 187–194). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-04772-5_25

  8. Almahdi EM, Zaidan AA, Zaidan BB, Alsalem MA, Albahri OS, Albahri AS (2019) Mobile-based patient monitoring systems: a prioritisation framework using multi-criteria decision-making techniques. Journal of Medical Systems 43(7):219. https://doi.org/10.1007/s10916-019-1339-9

    Article  CAS  PubMed  Google Scholar 

  9. Thabtah F, Mampusti E, Peebles D, Herradura R, varghese, jithin. (2019) A mobile-based screening system for data analyses of early dementia traits detection. Journal of Medical Systems 44(1):24. https://doi.org/10.1007/s10916-019-1469-0

    Article  PubMed  Google Scholar 

  10. Teo J (2020) Early detection of silent hypoxia in covid-19 pneumonia using smartphone pulse oximetry. Journal of Medical Systems 44(8):134. https://doi.org/10.1007/s10916-020-01587-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Naik BN, Gupta R, Singh A, Soni SL, Puri GD (2020) Real-time smart patient monitoring and assessment amid COVID-19 pandemic – an alternative approach to remote monitoring. Journal of Medical Systems 44(7):131. https://doi.org/10.1007/s10916-020-01599-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Akil, M., & Elloumi, Y. (2019). Detection of retinal abnormalities using smartphone-captured fundus images: a survey. In Real-Time Image Processing and Deep Learning 2019 (Vol. 10996, p. 109960K). Presented at the Real-Time Image Processing and Deep Learning 2019, International Society for Optics and Photonics. https://doi.org/10.1117/12.2519094

  13. Mohammadpour M, Heidari Z, Mirghorbani M, Hashemi H (2017) Smartphones, tele-ophthalmology, and VISION 2020. International Journal of Ophthalmology 10(12):1909–1918. https://doi.org/10.18240/ijo.2017.12.19

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jin K, Lu H, Su Z, Cheng C, Ye J, Qian D (2017) Telemedicine screening of retinal diseases with a handheld portable non-mydriatic fundus camera. BMC Ophthalmology 17(1):89. https://doi.org/10.1186/s12886-017-0484-5

    Article  PubMed  PubMed Central  Google Scholar 

  15. Volk Optical. (n.d.). Volk optical. Retrieved August 21, 2020, from https://www.volk.com/

  16. Majumder, S., Elloumi, Y., Akil, M., Kachouri, R., & Kehtarnavaz, N. (2020). A deep learning-based smartphone app for real-time detection of five stages of diabetic retinopathy. In Real-Time Image Processing and Deep Learning 2020 (Vol. 11401, p. 1140106). Presented at the Real-Time Image Processing and Deep Learning 2020, International Society for Optics and Photonics. https://doi.org/10.1117/12.2557554

  17. Acharya UR, Mookiah MRK, Koh JEW, Tan JH, Noronha K, Bhandary SV et al (2016) Novel risk index for the identification of age-related macular degeneration using radon transform and DWT features. Computers in Biology and Medicine 73:131–140. https://doi.org/10.1016/j.compbiomed.2016.04.009

    Article  PubMed  Google Scholar 

  18. Rapantzikos K, Zervakis M, Balas K (2003) Detection and segmentation of drusen deposits on human retina: potential in the diagnosis of age-related macular degeneration. Medical Image Analysis 7(1):95–108. https://doi.org/10.1016/S1361-8415(02)00093-2

    Article  CAS  PubMed  Google Scholar 

  19. García-Floriano A, Ferreira-Santiago Á, Camacho-Nieto O, Yáñez-Márquez C (2019) A machine learning approach to medical image classification: detecting age-related macular degeneration in fundus images. Computers & Electrical Engineering 75:218–229. https://doi.org/10.1016/j.compeleceng.2017.11.008

    Article  Google Scholar 

  20. Mookiah MRK, Acharya UR, Koh JEW, Chandran V, Chua CK, Tan JH et al (2014) Automated diagnosis of age-related macular degeneration using greyscale features from digital fundus images. Computers in Biology and Medicine 53:55–64. https://doi.org/10.1016/j.compbiomed.2014.07.015

    Article  PubMed  Google Scholar 

  21. Acharya UR, Hagiwara Y, Koh JEW, Tan JH, Bhandary SV, Rao AK, Raghavendra U (2017) Automated screening tool for dry and wet age-related macular degeneration (ARMD) using pyramid of histogram of oriented gradients (PHOG) and nonlinear features. Journal of Computational Science 20:41–51. https://doi.org/10.1016/j.jocs.2017.03.005

    Article  Google Scholar 

  22. Mookiah MRK, Acharya UR, Koh JEW, Chua CK, Tan JH, Chandran V et al (2014) Decision support system for age-related macular degeneration using discrete wavelet transform. Medical & Biological Engineering & Computing 52(9):781–796. https://doi.org/10.1007/s11517-014-1180-8

    Article  Google Scholar 

  23. Hijazi MHA, Coenen F, Zheng Y (2012) Data mining techniques for the screening of age-related macular degeneration. Knowledge-Based Systems 29:83–92. https://doi.org/10.1016/j.knosys.2011.07.002

    Article  Google Scholar 

  24. Lan D, Liu H, Bao Z, Xing M (2005) Radar HRRP target recognition based on higher order spectra. IEEE Transactions on Signal Processing 53(7):2359–2368. https://doi.org/10.1109/TSP.2005.849161

    Article  Google Scholar 

  25. Molina, L. C., Belanche, L., & Nebot, A. (2002). Feature selection algorithms: a survey and experimental evaluation. In 2002 IEEE International Conference on Data Mining, 2002. Proceedings. (pp. 306–313). Presented at the 2002 IEEE International Conference on Data Mining, 2002. Proceedings. https://doi.org/10.1109/ICDM.2002.1183917

  26. Williams BM, Burgess PI, Zheng Y (2019) Chapter 13 - Drusen and macular degeneration. In: Trucco E, MacGillivray T, Xu Y (eds) Computational Retinal Image Analysis. Academic Press, pp 245–272. https://doi.org/10.1016/B978-0-08-102816-2.00013-7

    Chapter  Google Scholar 

  27. Kim YJ, Kim KG (2018) Automated segmentation methods of drusen to diagnose age-related macular degeneration screening in retinal images. Computational and Mathematical Methods in Medicine. Research Article, Hindawi. https://doi.org/10.1155/2018/6084798

  28. Sagar AV, Balasubramanian S, Chandrasekaran V  (2007) Automatic detection of anatomical structures in digital fundus retinal images, in: Conference on Machine Vision Applications pp 483–486. https://www.cvl.iis.u-tokyo.ac.jp/mva/proceedings/2007CD/papers/13-13.pdf

  29. Tan NM, Wong DWK, Liu J, Ng WJ, Zhang Z, Lim JH, … Wong TY (2009) Automatic detection of the macula in the retinal fundus image by detecting regions with low pixel intensity. In 2009 International Conference on Biomedical and Pharmaceutical Engineering (pp. 1–5). Presented at the 2009 International Conference on Biomedical and Pharmaceutical Engineering. https://doi.org/10.1109/ICBPE.2009.5384075

  30. Alais R, Dokládal P, Erginay A, Figliuzzi B, Decencière E (2020) Fast macula detection and application to retinal image quality assessment. Biomedical Signal Processing and Control 55:101567. https://doi.org/10.1016/j.bspc.2019.101567

    Article  Google Scholar 

  31. Al-Bander B, Al-Nuaimy W, Williams BM, Zheng Y (2018) Multiscale sequential convolutional neural networks for simultaneous detection of fovea and optic disc. Biomedical Signal Processing and Control 40:91–101. https://doi.org/10.1016/j.bspc.2017.09.008

    Article  Google Scholar 

  32. Sonali Sahu S, Singh AK, Ghrera SP, Elhoseny M (2019) An approach for de-noising and contrast enhancement of retinal fundus image using CLAHE. Optics & Laser Technology 110:87–98. https://doi.org/10.1016/j.optlastec.2018.06.061

    Article  Google Scholar 

  33. Mittal D, Kumari K (2015) Automated detection and segmentation of drusen in retinal fundus images. Computers & Electrical Engineering 47:82–95. https://doi.org/10.1016/j.compeleceng.2015.08.014

    Article  Google Scholar 

  34. An integrated system for detection exudates and severity quantification for diabetic macular edema | SpringerLink. (n.d.). https://link.springer.com/article/10.1007%2Fs40846-020-00561-4. Accessed 15 Nov 2020

  35. Chen ZY, Abidi BR, Page DL, Abidi MA (2006) Gray-level grouping (GLG): an automatic method for optimized image contrast enhancement-part I: the basic method. IEEE Transactions on Image Processing 15(8):2290–2302. https://doi.org/10.1109/TIP.2006.875204

    Article  PubMed  Google Scholar 

  36. Mishra PK, Kumar A (2020) Classification of diabetic retinopathy based on segmentation of medical images. In: Bhattacharyya S, Konar D, Platos J, Kar C, Sharma K (eds) Hybrid Machine Intelligence for Medical Image Analysis. Springer, Singapore, pp 67–83. https://doi.org/10.1007/978-981-13-8930-6_4

    Chapter  Google Scholar 

  37. Pourreza-Shahri R, Tavakoli M, Kehtarnavaz N (2014) Computationally efficient optic nerve head detection in retinal fundus images. Biomedical Signal Processing and Control 11:63–73. https://doi.org/10.1016/j.bspc.2014.02.011

    Article  Google Scholar 

  38. Radon J (1986) On the determination of functions from their integral values along certain manifolds. In: IEEE Transactions on Medical Imaging, 5(4), 170–176. Medical Imaging, Presented at the IEEE Transactions on. https://doi.org/10.1109/TMI.1986.4307775

    Chapter  Google Scholar 

  39. Tavakoli, M., Mehdizadeh, A. R., Pourreza, R., Pourreza, H. R., Banaee, T., & Bahreini Toosi, M. H. (2011). Radon transform technique for linear structures detection: application to vessel detection in fluorescein angiography fundus images. In 2011 IEEE Nuclear Science Symposium Conference Record (pp. 3051–3056). Presented at the 2011 IEEE Nuclear Science Symposium Conference Record. https://doi.org/10.1109/NSSMIC.2011.6152552

  40. Magli E, Olmo G, Presti LL (1999) Pattern recognition by means of the Radon transform and the continuous wavelet transform. Signal Processing 73(3):277–289. https://doi.org/10.1016/S0165-1684(98)00198-4

    Article  Google Scholar 

  41. Jadhav DV, Holambe RS (2009) Feature extraction using Radon and wavelet transforms with application to face recognition. Neurocomputing 72(7):1951–1959. https://doi.org/10.1016/j.neucom.2008.05.001

    Article  Google Scholar 

  42. Mahfouz AE, Fahmy AS (2010) Fast localization of the optic disc using projection of image features. In: IEEE Transactions on Image Processing, 19(12), 3285–3289. Image Processing, Presented at the IEEE Transactions on. https://doi.org/10.1109/TIP.2010.2052280

    Chapter  Google Scholar 

  43. Nelson LJ, Smith RA (2019) Fibre direction and stacking sequence measurement in carbon fibre composites using Radon transforms of ultrasonic data. Composites Part A: Applied Science and Manufacturing 118:1–8. https://doi.org/10.1016/j.compositesa.2018.12.009

    Article  CAS  Google Scholar 

  44. Automated methods to determine electrospun fiber alignment and diameter using the radon transform. (n.d.). https://www.infona.pl/resource/bwmeta1.element.springer-84777733-5375-334e-bebd-bdeb44186a78. Accessed 22 Sept 2021

  45. Komal, K., Bhattacharjee, N., Albrecht, D., & Srinivasan, B. (2018). Parameter recovery using radon transform. In Proceedings of the 16th International Conference on Advances in Mobile Computing and Multimedia (pp. 34–43). New York, NY, USA: ACM. https://doi.org/10.1145/3282353.3282361

  46. Elloumi Y, Akil M, Kehtarnavaz N (2018) A mobile computer aided system for optic nerve head detection. Computer Methods and Programs in Biomedicine 162:139–148. https://doi.org/10.1016/j.cmpb.2018.05.004

    Article  PubMed  Google Scholar 

  47. Jadhav DV, Holambe RS (2010) Rotation, illumination invariant polynomial kernel Fisher discriminant analysis using Radon and discrete cosine transforms based features for face recognition. Pattern Recognition Letters 31(9):1002–1009. https://doi.org/10.1016/j.patrec.2009.12.026

    Article  Google Scholar 

  48. Chowdhury AR, Chatterjee T, Banerjee S (2019) A Random Forest classifier-based approach in the detection of abnormalities in the retina. Medical & Biological Engineering & Computing 57(1):193–203. https://doi.org/10.1007/s11517-018-1878-0

    Article  Google Scholar 

  49. Oliveira FSC, Polito PS (2018) Mesoscale eddy detection in satellite imagery of the oceans using the Radon transform. Progress in Oceanography 167:150–163. https://doi.org/10.1016/j.pocean.2018.08.003

    Article  Google Scholar 

  50. Kantz H, Schreiber T (2003) Nonlinear time series analysis, 2nd ed. Cambridge University Press,40 W. 20 St. New York, NY United States, Cambridge. https://www.cambridge.org/core/books/nonlinear-time-series-analysis/519783E4E8A2C3DCD4641E42765309C7

  51. Pincus SM (1991) Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences 88(6):2297–2301. https://doi.org/10.1073/pnas.88.6.2297

    Article  CAS  Google Scholar 

  52. Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology 278(6):H2039–H2049. https://doi.org/10.1152/ajpheart.2000.278.6.H2039

    Article  CAS  PubMed  Google Scholar 

  53. Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379–423. Presented at the The Bell System Technical Journal. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

  54. McCamley JD, Denton W, Arnold A, Raffalt PC, Yentes JM (2018) On the calculation of sample entropy using continuous and discrete human gait data. Entropy 20(10):764. https://doi.org/10.3390/e20100764

    Article  PubMed  PubMed Central  Google Scholar 

  55. Banerjee, P., & Mondal, A. (2015). An irregularity measurement based cardiac status recognition using support vector machine. Journal of Medical Engineering. Research Article, Hindawi. https://doi.org/10.1155/2015/327534

  56. Acharya UR, Fujita H, Sudarshan VK, Bhat S, Koh JEW (2015) Application of entropies for automated diagnosis of epilepsy using EEG signals: a review. Knowledge-Based Systems 88:85–96. https://doi.org/10.1016/j.knosys.2015.08.004

    Article  Google Scholar 

  57. Alcaraz R, Abásolo D, Hornero R, Rieta JJ (2010) Optimal parameters study for sample entropy-based atrial fibrillation organization analysis. Computer Methods and Programs in Biomedicine 99(1):124–132. https://doi.org/10.1016/j.cmpb.2010.02.009

    Article  PubMed  Google Scholar 

  58. Humeau-Heurtier A (2015) The multiscale entropy algorithm and its variants: a review. Entropy 17(5):3110–3123. https://doi.org/10.3390/e17053110

    Article  Google Scholar 

  59. Song Y, Crowcroft J, Zhang J (2012) Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine. Journal of Neuroscience Methods 210(2):132–146. https://doi.org/10.1016/j.jneumeth.2012.07.003

    Article  PubMed  Google Scholar 

  60. Sezgin M, Sankur B (2004) Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging 13(1):146–165. https://doi.org/10.1117/1.1631315

    Article  Google Scholar 

  61. Liu Jianzhuang, Li Wenqing, & Tian Yupeng. (1991). Automatic thresholding of gray-level pictures using two-dimension Otsu method. In China., 1991 International Conference on Circuits and Systems (pp. 325–327 vol.1). Presented at the China., 1991 International Conference on Circuits and Systems. https://doi.org/10.1109/CICCAS.1991.184351

  62. Lee H, Park R-H (1990) Comments on An optimal multiple threshold scheme for image segmentation. IEEE Transactions on Systems, Man, and Cybernetics 20(3):741–742. Presented at the IEEE Transactions on Systems, Man, and Cybernetics. https://doi.org/10.1109/21.57290

    Article  Google Scholar 

  63. Brankin, E., McCullagh, P., Black, N., Patton, W., & Muldrew, A. (2006). The optimisation of thresholding techniques for the identification of choroidal neovascular membranes in exudative age-related macular degeneration. In 19th IEEE Symposium on Computer-Based Medical Systems (CBMS’06) (pp. 430–435). Presented at the 19th IEEE Symposium on Computer-Based Medical Systems (CBMS’06). https://doi.org/10.1109/CBMS.2006.157

  64. Harangi B, Hajdu A (2014) Automatic exudate detection by fusing multiple active contours and regionwise classification. Computers in Biology and Medicine 54:156–171. https://doi.org/10.1016/j.compbiomed.2014.09.001

    Article  PubMed  Google Scholar 

  65. Cao L, Li H (2020) Enhancement of blurry retinal image based on non-uniform contrast stretching and intensity transfer. Medical & Biological Engineering & Computing 58(3):483–496. https://doi.org/10.1007/s11517-019-02106-7

    Article  Google Scholar 

  66. Shin K (2016) An alternative approach to measure similarity between two deterministic transient signals. Journal of Sound and Vibration 371:434–445. https://doi.org/10.1016/j.jsv.2016.02.037

    Article  Google Scholar 

  67. Shin K, Yang H, Lee S-K, Lee Y-S (2013) Group delay based location template matching method for the identification of the impact location on a plate. Journal of Sound and Vibration 332(8):2111–2117. https://doi.org/10.1016/j.jsv.2012.12.007

    Article  Google Scholar 

  68. Ramya R, Sasikala T (2019) An efficient Minkowski distance-based matching with Merkle hash tree authentication for biometric recognition in cloud computing. Soft Computing 23(24):13423–13431. https://doi.org/10.1007/s00500-019-03881-z

    Article  Google Scholar 

  69. Vapnik, V. (2000). The nature of statistical learning theory. In Statistics for Engineering and Information Science (Vol. 8, pp. 1–15). https://doi.org/10.1007/978-1-4757-3264-1_1

  70. Yu S, Xiao D, Kanagasingam Y (2018) Machine learning based automatic neovascularization detection on optic disc region. IEEE Journal of Biomedical and Health Informatics 22(3):886–894. https://doi.org/10.1109/JBHI.2017.2710201

    Article  PubMed  Google Scholar 

  71. Ruba, T., & Ramalakshmi, K. (2015). Identification and segmentation of exudates using SVM classifier. In 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS) (pp. 1–6). Presented at the 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS). https://doi.org/10.1109/ICIIECS.2015.7193219

  72. Zheng Y, Hijazi MHA, Coenen F (2012) Automated “disease/no disease” grading of age-related macular degeneration by an image mining approach. Investigative Ophthalmology & Visual Science 53(13):8310–8318. https://doi.org/10.1167/iovs.12-9576

    Article  Google Scholar 

  73. Ayinala, M., & Parhi, K. K. (2012). Low complexity algorithm for seizure prediction using Adaboost. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 1061–1064). Presented at the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. https://doi.org/10.1109/EMBC.2012.6346117

  74. (15) SVM-based real-time hyperspectral image classifier on a manycore architecture | Request PDF. (n.d.). ResearchGate. Retrieved February 6, 2020, from https://www.researchgate.net/publication/319248130_SVM-based_Real-Time_Hyperspectral_Image_Classifier_on_a_Manycore_Architecture

  75. Usage Models. (n.d.). https://docs.nvidia.com/tegra/Content/OpenCV_Usage_Models.html. Accessed 14 Sept 2020

  76. The STARE Project. (n.d.). https://cecas.clemson.edu/~ahoover/stare/. Accessed 19 Oct 2020

  77. REFUGE Grand Challenge. (n.d.). grand-challenge.org. https://refuge.grand-challenge.org/. Accessed 9 Nov 2021

  78. Pachade S, Porwal P, Thulkar D, Kokare M, Deshmukh G, Sahasrabuddhe V et al (2021) Retinal fundus multi-disease image dataset (RFMiD): a dataset for multi-disease detection researcH. Data 6(2):14. https://doi.org/10.3390/data6020014

    Article  Google Scholar 

  79. OpenCV. (n.d.). https://opencv.org/. Accessed 24 Dec 2019

  80. ODBOT: outlier detection-based oversampling technique for imbalanced datasets learning | SpringerLink. (n.d.). Retrieved December 2, 2021, from. https://doi.org/10.1007/s00521-021-06198-x

  81. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16:321–357. https://doi.org/10.1613/jair.953

    Article  Google Scholar 

  82. Labonne, M., Olivereau, A., Polvé, B., & Zeghlache, D. (2019). A cascade-structured meta-specialists approach for neural network-based intrusion detection. In 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC) (pp. 1–6). Presented at the 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC). https://doi.org/10.1109/CCNC.2019.8651856

  83. Han H, Wang W-Y, Mao B-H (2005) Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In: Huang D-S, Zhang X-P, Huang G-B (eds) Advances in Intelligent Computing. Springer, Berlin, Heidelberg, pp 878–887. https://doi.org/10.1007/11538059_91

    Chapter  Google Scholar 

  84. Wang K-J, Adrian AM, Chen K-H, Wang K-M (2015) A hybrid classifier combining Borderline-SMOTE with AIRS algorithm for estimating brain metastasis from lung cancer: a case study in Taiwan. Computer Methods and Programs in Biomedicine 119(2):63–76. https://doi.org/10.1016/j.cmpb.2015.03.003

    Article  PubMed  Google Scholar 

  85. Glaucoma disease diagnosis with an artificial algae-based deep learning algorithm | SpringerLink. (n.d.). Retrieved February 19, 2022, from https://doi.org/10.1007/s11517-022-02510-6

  86. Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. The Annals of Mathematical Statistics 11(1):86–92 Retrieved from https://www.jstor.org/stable/2235971

    Article  Google Scholar 

  87. Khalid, S., Akram, M. U., Shehryar, T., Ahmed, W., Sadiq, M., Manzoor, M., & Nosheen, N. (n.d.). Automated diagnosis system for age-related macular degeneration using hybrid features set from fundus images. International Journal of Imaging Systems and Technology, n/a(n/a). https://doi.org/10.1002/ima.22456

  88. Rajinikanth V, Sivakumar R, Hemanth DJ, Kadry S, Mohanty JR, Arunmozhi S et al (2021) Automated classification of retinal images into AMD/non-AMD Class—a study using multi-threshold and Gassian-filter enhanced images. Evolutionary Intelligence 14(2):1163–1171. https://doi.org/10.1007/s12065-021-00581-2

    Article  Google Scholar 

  89. Heyang YQW, Heyang WANG, Q. Y. (n.d.) A screening and recognition method for multiple diseases of the retina based on deep convolutional integrated networks. Journal of Intelligent Science and Technology 3(3):259–267. https://doi.org/10.11959/j.issn.2096-6652.202127

Download references

Acknowledgements

The authors acknowledge the help of Dr. Nesrine Abroug, ophthalmologist in the hospital Fattouma Bourguiba (Tunisie), to provide the ground truth of smartphone-captured fundus images.

Funding

Funding for this study came from Campus-France through the PHC-UTIQUE Research program (grant number: 19G1408).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofien Ben Sayadia.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayadia, S.B., Elloumi, Y., Kachouri, R. et al. Automated method for real-time AMD screening of fundus images dedicated for mobile devices. Med Biol Eng Comput 60, 1449–1479 (2022). https://doi.org/10.1007/s11517-022-02546-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02546-8

Keywords

Navigation