Skip to main content

Advertisement

Log in

Occupational exposure to electromagnetic fields in magnetic resonance environment: an update on regulation, exposure assessment techniques, health risk evaluation, and surveillance

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

A Correction to this article was published on 13 January 2022

This article has been updated

Abstract

Magnetic resonance imaging (MRI) is one of the most-used diagnostic imaging methods worldwide. There are ∼50,000 MRI scanners worldwide each of which involves a minimum of five workers from different disciplines who spend their working days around MRI scanners. This review analyzes the state of the art of literature about the several aspects of the occupational exposure to electromagnetic fields (EMF) in MRI: regulations, literature studies on biological effects, and health surveillance are addressed here in detail, along with a summary of the main approaches for exposure assessment. The original research papers published from 2013 to 2021 in international peer-reviewed journals, in the English language, are analyzed, together with documents published by legislative bodies. The key points for each topic are identified and described together with useful tips for precise safeguarding of MRI operators, in terms of exposure assessment, studies on biological effects, and health surveillance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

References

  1. McRobbie DW, Moore EA, Graves MJ, Prince MR (2017) MRI from picture to proton. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. OECD (2017) Health at a Glance 2017: OECD Indicators. https://doi.org/10.1787/health_glance-2017-en

  3. Hansson Mild K, Hand J, Hietanen M et al (2013) Exposure classification of MRI workers in epidemiological studies. Bioelectromagnetics 34:81–84. https://doi.org/10.1002/bem.21728

    Article  PubMed  Google Scholar 

  4. McRobbie DW (2020) Essentials of MRI safety. Wiley-Blackwell, Hoboken New Jersey US

    Google Scholar 

  5. Van Nierop LE, Slottje P, Kingma H, Kromhout H (2013) MRI-related static magnetic stray fields and postural body sway: a double-blind randomized crossover study. Magn Reson Med 70:232–240. https://doi.org/10.1002/mrm.24454

    Article  PubMed  Google Scholar 

  6. van Nierop LE, Slottje P, Van ZM, Kromhout H (2015) Simultaneous exposure to MRI-related static and magnetic fields affects neurocognitive performance : a double-blind randomized crossover study. Magn Reson Med 849:840–849. https://doi.org/10.1002/mrm.25443

    Article  Google Scholar 

  7. Zanotti G, Ligabue G, Korpinen L, Gobba F (2016) Subjective symptoms in magnetic resonance imaging operators: prevalence, short-term evolution and possible related factors. Med del Lav 107:263–270

    Google Scholar 

  8. Walker M, Fultz A, Davies C, Brockopp D (2020) Symptoms experienced by MR technologists exposed to static magnetic fields. Radiol Technol 91:316–323

    PubMed  Google Scholar 

  9. Bongers S, Slottje P, Portengen L, Kromhout H (2016) Exposure to static magnetic fields and risk of accidents among a cohort of workers from a medical imaging device manufacturing facility. Magn Reson Med 75:2165–2174. https://doi.org/10.1002/mrm.25768

    Article  PubMed  Google Scholar 

  10. Bongers S, Slottje P, Kromhout H (2018) Development of hypertension after long-term exposure to static magnetic fields among workers from a magnetic resonance imaging device manufacturing facility. Environ Res 164:565–573. https://doi.org/10.1016/j.envres.2018.03.008

    Article  CAS  PubMed  Google Scholar 

  11. Huss A, Schaap K, Kromhout H (2017) MRI-related magnetic field exposures and risk of commuting accidents – a cross-sectional survey among Dutch imaging technicians. Environ Res 156:613–618. https://doi.org/10.1016/j.envres.2017.04.022

    Article  CAS  PubMed  Google Scholar 

  12. Huss A, Ozdemir E, Schaap K, Kromhout H (2021) Occupational exposure to MRI-related magnetic stray fields and sleep quality among MRI – technicians - a cross-sectional study in the Netherlands. Int J Hyg Environ Health 231:113636. https://doi.org/10.1016/j.ijheh.2020.113636

    Article  PubMed  Google Scholar 

  13. ICNIRP (1998) Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys 74:494–522. https://doi.org/10.1097/HP.0b013e3181aff9db

    Article  CAS  Google Scholar 

  14. ICNIRP (2009) Guidelines on limits of exposure to static magnetic fields. Health Phys 96:504–514. https://doi.org/10.1097/01.HP.0000343164.27920.4a

    Article  CAS  Google Scholar 

  15. IEEE (2006) Standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. Institute of Electrical and Electronics Engineers

  16. IEEE (2002) Standard for safety levels with respect to human exposure to electromagnetic fields, 0–3 kHz. Institute of Electrical and Electonics Engineers

  17. European Parliament and Council of the European Union (2013) Directive 2013/35/EC on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields). Off J Eur Union L179/1–21

  18. Kemper VG, De Martino F, Emmerling TC et al (2018) High resolution data analysis strategies for mesoscale human functional MRI at 7 and 9.4T. Neuroimage 164:48–58. https://doi.org/10.1016/j.neuroimage.2017.03.058

    Article  PubMed  Google Scholar 

  19. Kagadis GC, Ford NL, Karnabatidis DN et al (2016) Handbook of small animal imaging : preclinical imaging, therapy, and applications. CRC Press Taylor and Francis Group, Cleveland Ohio US

    Book  Google Scholar 

  20. Hartwig V, Romeo S, Zeni O (2018) Occupational exposure to electromagnetic fields in magnetic resonance environment: basic aspects and review of exposure assessment approaches. Med Biol Eng Comput 56:531–545. https://doi.org/10.1007/s11517-017-1779-7

    Article  PubMed  Google Scholar 

  21. Simmons A, Hakansson K, Sammet S et al (2016) Magnetic resonance safety. Abdom Radiol 41:17–29. https://doi.org/10.1007/s00261-016-0680-4

    Article  Google Scholar 

  22. Panych LP, Madore B (2018) The physics of MRI safety. J Magn Reson Imaging 47:28–43. https://doi.org/10.1002/jmri.25761

    Article  PubMed  Google Scholar 

  23. Frankel J, Wilén J, Hansson Mild K (2018) Assessing exposures to magnetic resonance imaging’s complex mixture of magnetic fields for in vivo, in vitro, and epidemiologic studies of health effects for staff and patients. Front Public Heal 6https://doi.org/10.3389/fpubh.2018.00066

  24. Hartwig V (2016) Risk of magnetic resonance: the safety-biological effects. In: Saba L (ed) Image Principles, Neck, and the Brain. CRC Press, pp 191–212

  25. Hartwig V, Giovannetti G, Vanello N et al (2009) Biological effects and safety in magnetic resonance imaging: a review. Int J Env Res Public Heal 6:1778–1798. https://doi.org/10.3390/ijerph6061778

    Article  Google Scholar 

  26. Stafford RJ (2020) The physics of magnetic resonance imaging safety. Magn Reson Imaging Clin N Am 28:517–536. https://doi.org/10.1016/j.mric.2020.08.002

    Article  PubMed  Google Scholar 

  27. SCENIHR (2015) Potential health effects of exposure to electromagnetic fields (EMF). SCENIHR Rep 1–288https://doi.org/10.2772/75635

  28. Betta G, Capriglione D, Pasquino N (2012) Experimental investigation on workers’ exposure to electromagnetic fields in proximity of magnetic resonance imaging systems. Measurement 45:199–206. https://doi.org/10.1016/j.measurement.2011.03.001

    Article  Google Scholar 

  29. Karpowicz J, Hietanen M, Gryz K (2007) Occupational risk from static magnetic fields of MRI scanners. Environmentalist 27:533–538. https://doi.org/10.1007/s10669-007-9064-1

    Article  Google Scholar 

  30. Hartwig V, Biagini C, De Marchi D et al (2019) The procedure for quantitative characterization and analysis of magnetic fields in magnetic resonance sites for protection of workers: a pilot study. Ann Work Expo Heal 63:1–9. https://doi.org/10.1093/annweh/wxz002

    Article  Google Scholar 

  31. Hartwig V, Vanello N, Giovannetti G et al (2011) A novel tool for estimation of magnetic resonance occupational exposure to spatially varying magnetic fields. MAGMA 24:323–330. https://doi.org/10.1007/s10334-011-0279-2

    Article  PubMed  Google Scholar 

  32. Hartwig V, Vanello N, Giovannetti G et al (2014) Estimation of occupational exposure to static magnetic fields due to usual movements in magnetic resonance units. Concepts Magn Reson Part B Magn Reson Eng 44:75–81. https://doi.org/10.1002/cmr.b.21270

    Article  Google Scholar 

  33. Hartwig V, Biagini C, Marchi D De, et al (2020) Analysis , comparison and representation of occupational exposure to a static magnetic field in a 3-T MRI site. Int J Occup Saf Ergon 0:1–10https://doi.org/10.1080/10803548.2020.1738114

  34. Gurrera D, Gallias KK, Spanò M et al (2019) Moving across the static magnetic field of a 1.5 T MRI scanner: analysing compliance with Directive 2013/35/EU. Phys Medica 57:238–244. https://doi.org/10.1016/j.ejmp.2018.11.004

    Article  Google Scholar 

  35. Schaap K, Christopher-de Vries Y, Mason CK et al (2014) Occupational exposure of healthcare and research staff to static magnetic stray fields from 1.5-7 Tesla MRI scanners is associated with reporting of transient symptoms. Occup Environ Med 71:423–429. https://doi.org/10.1136/oemed-2013-101890

    Article  PubMed  Google Scholar 

  36. Schaap K, Christopher-De Vries Y, Slottje P, Kromhout H (2013) Inventory of MRI applications and workers exposed to MRI- related electromagnetic fields in the Netherlands. Eur J Radiol 82:2279–2285. https://doi.org/10.1016/j.ejrad.2013.07.023

    Article  PubMed  Google Scholar 

  37. Te.Si.A. (2017) Mafiss-Te.Si.A. TEcnologie e SInergie Applicate Srl. http://tesiasrl.it/ma-fi-s-s-dispositivo-rilevatore-campi-magnetici-statici/. Accessed 11 Dec 2018

  38. Crozier S, Wilson SJ, Gregg I. Magnetic field dosimeter. U.S. Patent 7936168B2 filed September 28, 2005

  39. Fuentes MA, Trakic A, Wilson SJ, Crozier S (2008) Analysis and measurements of magnetic field exposures for healthcare workers in selected MR environments. IEEE Trans Biomed Eng 55:1355–1364. https://doi.org/10.1109/TBME.2007.913410

    Article  PubMed  Google Scholar 

  40. Batistatou E, Molter A, Kromhout H et al (2016) Personal exposure to static and time-varying magnetic fields during MRI procedures in clinical practice in the UK. Occup Environ Med 73:779–786. https://doi.org/10.1136/oemed-2015-103194

    Article  PubMed  Google Scholar 

  41. Delmas A, Weber N, Piffre J et al (2017) MRI “exposimetry”: how to analyze, compare and represent worker exposure to static magnetic field? Radiat Prot Dosimetry 177:415–423. https://doi.org/10.1093/rpd/ncx060

    Article  PubMed  Google Scholar 

  42. Tecnorad (2017) Talete-Tecnorad Personal Dosimetry Service. http://www.tecnorad.it/campimagnetici.php. Accessed 11 Dec 2018

  43. Hartwig V, Virgili G, Ferrante Vero LF et al (2018) Towards a personalised and interactive assessment of occupational exposure to magnetic field during daily routine in magnetic resonance. Radiat Prot Dosimetry 182:1–9. https://doi.org/10.1093/rpd/ncy114

    Article  Google Scholar 

  44. Hartwig V, Ferrante Vero LFLF, Virgili G et al (2019) Device for the assessment of occupational exposure to time-varying magnetic field due to movement in magnetic resonance environments. Electron Lett 55:579–581. https://doi.org/10.1049/el.2019.0275

    Article  Google Scholar 

  45. Schaap K, Christopher-De Vries Y, Cambron-Goulet É, Kromhout H (2016) Work-related factors associated with occupational exposure to static magnetic stray fields from MRI scanners. Magn Reson Med 75:2141–2155. https://doi.org/10.1002/mrm.25720

    Article  CAS  PubMed  Google Scholar 

  46. Acri G, Testagrossa B, Vermiglio G (2015) Personal time-varying magnetic fields evaluation during activities in MRI sites. In: Proceedings of the World Congress on medical physics and biomedical engineering, Toronto, ON, Canada, 7–12 June 2015. Springer, Cham, Switzerland, pp 741–744

  47. Filice S, Rossi R, Crisi G (2019) Assessment of movement-induced time-varying magnetic fields exposure in magnetic resonance imaging by a commercial portable magnetometer. Radiat Prot Dosimetry 2014:1–5. https://doi.org/10.1093/rpd/ncz016

    Article  CAS  Google Scholar 

  48. Sannino A, Romeo S, Scarfì MR et al (2017) Exposure assessment and biomonitoring of workers in magnetic resonance environment: an exploratory study. Front Public Heal 5:344. https://doi.org/10.3389/fpubh.2017.00344

    Article  Google Scholar 

  49. Farrag SI (2015) Numerical simulation of the induced currents in occupational workers induced by body-motion around different MRI fields. Int J Adv Res Comput Sci Softw Eng 5:51–55

    Google Scholar 

  50. ICNIRP (2014) Guidelines for limiting exposure to electric fields induced by and by time-varying magnetic fields below 1 Hz. Health Phys 106:418–425. https://doi.org/10.1097/HP.0b013e31829e5580

    Article  CAS  Google Scholar 

  51. Cobos Sánchez C, Glover P, Power H, Bowtell R (2012) Calculation of the electric field resulting from human body rotation in a magnetic field. Phys Med Biol 57:4739–4753. https://doi.org/10.1088/0031-9155/57/15/4739

    Article  PubMed  Google Scholar 

  52. Zilberti L, Bottauscio O, Chiampi M (2015) Motion-induced fields in magnetic resonance imaging: are the dielectric currents really negligible? IEEE Magn Lett 6:1–4. https://doi.org/10.1109/LMAG.2015.2429641

    Article  Google Scholar 

  53. Zilberti L, Bottauscio O, Chiampi M (2016) Assessment of exposure to MRI motion-induced fields based on the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. Magn Reson Med 76:1291–1300. https://doi.org/10.1002/mrm.26031

    Article  CAS  PubMed  Google Scholar 

  54. Laakso I, Kännälä S, Jokela K (2013) Computational dosimetry of induced electric fields during realistic movements in the vicinity of a 3 T MRI scanner. Phys Med Biol 58:2625–2640. https://doi.org/10.1088/0031-9155/58/8/2625

    Article  PubMed  Google Scholar 

  55. Chiampi M, Zilberti L (2011) Induction of electric field in human bodies moving near MRI: an efficient BEM computational procedure. IEEE Trans Biomed Eng 58:2787–2793

    Article  CAS  Google Scholar 

  56. Andreuccetti D, Contessa GM, Falsaperla R et al (2013) Weighted-peak assessment of occupational exposure due to MRI gradient fields and movements in a nonhomogeneous static magnetic field. Med Phys 40:011910. https://doi.org/10.1118/1.4771933

    Article  CAS  PubMed  Google Scholar 

  57. Bonutti F, Tecchio M, Maieron M et al (2016) Measurement of the weighted peak level for occupational exposure to gradient magnetic fields for 1.5 and 3 tesla MRI body scanners. Radiat Prot Dosimetry 168:358–364. https://doi.org/10.1093/rpd/ncv308

    Article  CAS  PubMed  Google Scholar 

  58. Di Liberto R, Andreuccetti D, Comelli M (2021) Assessment of the exposure to gradient magnetic fields generated by MRI tomographs : measurement method, verification of limits and clearance areas through a web-based platform. Int J Environ Res Public Heal Artic 18:3475

    Article  Google Scholar 

  59. Wang H, Trakic A, Liu F, Crozier S (2008) Numerical field evaluation of healthcare workers when bending towards high-field MRI magnets. Magn Reson Med 59:410–422. https://doi.org/10.1002/mrm.21441

    Article  CAS  PubMed  Google Scholar 

  60. Crozier S, Wang H, Trakic A, Liu F (2007) Exposure of workers to pulsed gradients in MRI. J Magn Reson Imaging 26:1236–1254. https://doi.org/10.1002/jmri.21162

    Article  PubMed  Google Scholar 

  61. Riches SF, Collins DJ, Scuffham JW, Leach MO (2007) EU Directive 2004/40: Field measurements of a 1.5 T clinical MR scanner. Br J Radiol 80:483–487. https://doi.org/10.1259/bjr/69843752

    Article  CAS  PubMed  Google Scholar 

  62. Gourzoulidis G, Karabetsos E, Skamnakis N et al (2015) Occupational electromagnetic fields exposure in magnetic resonance imaging systems - preliminary results for the RF harmonic content. Phys Medica 31:757–762. https://doi.org/10.1016/j.ejmp.2015.03.006

    Article  CAS  Google Scholar 

  63. Stralka JP, Bottomley PA (2007) A prototype RF dosimeter for independent measurement of the average specific absorption rate (SAR) during MRI. J Magn Reson Imaging 26:1296–1302. https://doi.org/10.1002/jmri.21141

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yee KS (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag 14:302–307

    Article  Google Scholar 

  65. Hartwig V, Giovannetti G, Vanello N et al (2010) Numerical calculation of peak-to-average specific absorption rate on different human thorax models for magnetic resonance safety considerations. Appl Magn Reson 38:337–348

    Article  Google Scholar 

  66. Christ A, Kainz W, Hahn EG et al (2010) The virtual family–development of surface-based anatomical models of two adults and two children for dosimetric simulations. Phys Med Biol 55:N23-38. https://doi.org/10.1088/0031-9155/55/2/N01

    Article  PubMed  Google Scholar 

  67. ICNIRP (2010) Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz). Health Phys 99:818–836. https://doi.org/10.1097/HP.0b013e3181f06c86

    Article  CAS  Google Scholar 

  68. European Commission (2015) Non-binding guide to good practice for implementing Directive 2013/35/EC Electromagnetic Fields Volume 1: Practical Guide

  69. Andreuccetti D, Biagi L, Burriesci G et al (2017) Occupational exposure in MR facilities due to movements in the static magnetic field. Med Phys 44:5988–5996. https://doi.org/10.1002/mp.12537

    Article  PubMed  Google Scholar 

  70. Zilberti L, Bottauscio O, Chiampi M (2016) A potential-based formulation for motion-induced electric fields in MRI. IEEE Trans Magn 52https://doi.org/10.1109/TMAG.2015.2474748

  71. ICNIRP (2003) Guidance on determining compliance of exposure to pulsed fields and complex non-sinusoidal waveforms below 100 kHz with ICNIRP guidelines. Health Phys 84:383–387

    Article  Google Scholar 

  72. European Commission (2015) Non-binding guide to good practice for implementing Directive 2013/35/EC Volume 2: Case Studies

  73. European Committee for Electrotechnical Standardization (2016) EN 50527–1:2016, Procedure for the Assessment of the Exposure to Electromagnetic Fields of Workers Bearing Active Implantable Medical Devices—Part 1: General

  74. European Committee for Electrotechnical Standardization (2016) EN 50527–2–1:2016, Procedure for the Assessment of the Exposure to Electromagnetic Fields of Workers Bearing Active Implantable Medical Devices—Part 2–1: Specific Assessment for Workers with Cardiac Pacemakers

  75. European Committee for Electrotechnical Standardization (2018) EN 50527–2–2:2018, Procedure for the Assessment of the Exposure to Electromagnetic Fields of Workers Bearing Active Implantable Medical Devices—Part 2–2: Specific Assessment for Workers with Cardioverter Defibrillators (ICDs)

  76. European Parliament and of the Council (2017) Regulations (EU) 2017/745 on medical devices. Off J Eur Union L 117:1–228

    Google Scholar 

  77. Mattei E, Calcagnini G, Censi F et al (2019) Workers with active implantable medical devices exposed to emf: in vitro test for the risk assessment. Environ - MDPI 6:1–13. https://doi.org/10.3390/environments6110119

    Article  Google Scholar 

  78. Mattei E, Censi F, Calcagnini G et al (2016) Pacemaker and ICD oversensing induced by movements near the MRI scanner bore. Med Phys 43:6621–6631. https://doi.org/10.1118/1.4967856

    Article  CAS  PubMed  Google Scholar 

  79. Mattei E, Censi F, Triventi M, et al (2015) Wrong detection of ventricular fibrillation in an implantable cardioverter defibrillator caused by the movement near the MRI scanner bore. In: Conf Proc IEEE Eng Med Biol Soc. pp 7200–3

  80. Shellock FG, Woods TO, Crues J V. (2009) MR Labeling Information for implants and devices: explanation of terminology. Radiology 253https://doi.org/10.1148/RADIOL.2531091030

  81. Zeng Q, Wang Q, Zheng J, et al (2018) Evaluation of MRI RF electromagnetic field induced heating near leads of cochlear implants. Phys Med Biol 63https://doi.org/10.1088/1361-6560/aacbf2

  82. Srinivasan R, So CW, Amin N et al (2019) A review of the safety of MRI in cochlear implant patients with retained magnets. Clin Radiol 74:972.e9-972.e16. https://doi.org/10.1016/j.crad.2019.06.011

    Article  CAS  Google Scholar 

  83. Winter L, Seifert F, Zilberti L, et al (2020) MRI-related heating of implants and devices: a review. J Magn Reson Imaging 1–20https://doi.org/10.1002/jmri.27194

  84. Arduino A, Zanovello U, Hand J, et al (2021) Heating of hip joint implants in MRI: the combined effect of RF and switched-gradient fields. Magn Reson Med 1–16https://doi.org/10.1002/mrm.28666

  85. Fujimoto K, Angelone LM, Lucano E et al (2018) Radio-frequency safety assessment of stents in blood vessels during magnetic resonance imaging. Front Physiol 9:1–10. https://doi.org/10.3389/fphys.2018.01439

    Article  Google Scholar 

  86. Gobba F, Bianchi N, Verga P et al (2012) Menometrorrhagia in magnetic resonance imaging operators with copper intrauterine contraceptive devices (iuds): a case report. Int J Occup Med Environ Health 25:97–102. https://doi.org/10.2478/s13382-012-0005-y

    Article  PubMed  Google Scholar 

  87. Huss A, Schaap K, Kromhout H (2018) A survey on abnormal uterine bleeding among radiographers with frequent MRI exposure using intrauterine contraceptive devices. Magn Reson Med 79:1083–1089. https://doi.org/10.1002/mrm.26707

    Article  CAS  PubMed  Google Scholar 

  88. Zradziński P (2015) Difficulties in applying numerical simulations to an evaluation of occupational hazards caused by electromagnetic fields. Int J Occup Saf Ergon 21:213–220. https://doi.org/10.1080/10803548.2015.1028233

    Article  PubMed  PubMed Central  Google Scholar 

  89. Burgio E, Piscitelli P, Migliore L (2018) Ionizing radiation and human health: reviewing models of exposure and mechanisms of cellular damage. An Epigenetic Perspective. Int J Environ Res Public Health 15 https://doi.org/10.3390/ijerph15091971

  90. Schaap K, Christopher-De Vries Y, Crozier S et al (2014) Exposure to static and time-varying magnetic fields from working in the static magnetic stray fields of MRI scanners: a comprehensive survey in the Netherlands. Ann Occup Hyg 58:1094–1110. https://doi.org/10.1093/annhyg/meu057

    Article  PubMed  Google Scholar 

  91. Karpowicz J, Gryz K (2006) Health risk assessment of occupational exposure to a magnetic field from magnetic resonance imaging devices. Int J Occup Saf Ergon 12:155–167. https://doi.org/10.1080/10803548.2006.11076679

    Article  PubMed  Google Scholar 

  92. Vogt FM, Ladd ME, Hunold P et al (2004) Increased time rate of change of gradient fields: effect on peripheral nerve stimulation at clinical MR imaging. Radiology 233:548–554. https://doi.org/10.1148/radiol.2332030428

    Article  PubMed  Google Scholar 

  93. Davids M, Guérin B, vom Endt A et al (2019) Prediction of peripheral nerve stimulation thresholds of MRI gradient coils using coupled electromagnetic and neurodynamic simulations. Magn Reson Med 81:686–701. https://doi.org/10.1002/mrm.27382

    Article  PubMed  Google Scholar 

  94. Staebler P (2017) Human exposure to electromagnetic fields: from extremely low frequency (ELF) to radiofrequency. John Wiley & Sons Inc, Hoboken NJ USA

    Book  Google Scholar 

  95. Brix G, Kolem H, Nitz WR et al (2008) Basics of magnetic resonance imaging and magnetic resonance spectroscopy. Magnetic Resonance Tomography. Springer, Berlin Heidelberg Berlin Heidelberg, pp 3–167

    Chapter  Google Scholar 

  96. ICNIRP (2004) ICNIRP statement on medical magnetic resonance (MR) procedures: protection of patients. Health Phys 87:197–216

    Article  Google Scholar 

  97. Dewhirst MW, Viglianti BL, Lora-Michiels M et al (2003) Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperth 19:267–294. https://doi.org/10.1080/0265673031000119006

    Article  CAS  Google Scholar 

  98. van den Brink JS (2019) Thermal effects associated with RF exposures in diagnostic MRI: overview of existing and emerging concepts of protection. Concepts Magn Reson Part B 2019:1–17. https://doi.org/10.1155/2019/9618680

    Article  Google Scholar 

  99. Mattei E, Lucano E, Censi F, et al (2016) High dielectric material in MRI: Numerical assessment of the reduction of the induced local power on implanted cardiac leads. Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS 2016-Octob:2361–2364. https://doi.org/10.1109/EMBC.2016.7591204

  100. Shellock FG (2014) Reference manual for magnetic resonance safety, implants, and devices, 2014th edn. Biomedical Research Publishing Group, Playa Del Rey CA

    Google Scholar 

  101. Schaefers G, Melzer A (2011) Devices and materials in MRI. Springer Handbook of Medical Technology. Springer, Berlin Heidelberg Berlin Heidelberg, pp 503–521

    Chapter  Google Scholar 

  102. Schlamann M, Voigt MA, Maderwald S et al (2010) Exposure to high-field MRI does not affect cognitive function. J Magn Reson Imaging 31:1061–1066. https://doi.org/10.1002/jmri.22065

    Article  PubMed  Google Scholar 

  103. Mollerlokken OJ, Moen BE, Baste V et al (2012) No effects of MRI scan on male reproduction hormones. Reprod Toxicol 34:133–139. https://doi.org/10.1016/j.reprotox.2012.04.003

    Article  CAS  PubMed  Google Scholar 

  104. Thulborn RK, Atkinson CI, Pliskin HN, Jamil S (2019) Safety of 9.4 Tesla for neuroimaging of healthy and for-cause volunteers. J Radiol Clin Imaging 02:23–33. https://doi.org/10.26502/jrci.2644-2809011

    Article  Google Scholar 

  105. van Nierop LE, Slottje P, van Zandvoort MJE et al (2012) Effects of magnetic stray fields from a 7 Tesla MRI scanner on neurocognition: a double-blind randomised crossover study. Occup Environ Med 69:759–766. https://doi.org/10.1136/oemed-2011-100468

    Article  PubMed  Google Scholar 

  106. Grant A, Metzger GJ, Van de Moortele PF et al (2020) 10.5 T MRI static field effects on human cognitive, vestibular, and physiological function. Magn Reson Imaging 73:163–176. https://doi.org/10.1016/j.mri.2020.08.004

    Article  PubMed  PubMed Central  Google Scholar 

  107. Simi S, Ballardin M, Casella M et al (2008) Is the genotoxic effect of magnetic resonance negligible? Low persistence of micronucleus frequency in lymphocytes of individuals after cardiac scan. Mutat Res - Fundam Mol Mech Mutagen 645:39–43. https://doi.org/10.1016/j.mrfmmm.2008.08.011

    Article  CAS  Google Scholar 

  108. Fiechter M, Stehli J, Fuchs TA et al (2013) Impact of cardiac magnetic resonance imaging on human lymphocyte DNA integrity. Eur Heart J 34:2340–2345. https://doi.org/10.1093/eurheartj/eht184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lancellotti P, Nchimi A, Delierneux C et al (2015) Biological effects of cardiac magnetic resonance on human blood cells. Circ Cardiovasc Imaging 8:1–9. https://doi.org/10.1161/CIRCIMAGING.115.003697

    Article  Google Scholar 

  110. Brand M, Ellmann S, Sommer M et al (2015) Influence of cardiac MR imaging on DNA double-strand breaks in human blood lymphocytes. Radiology 277:406–412. https://doi.org/10.1148/radiol.2015150555

    Article  PubMed  Google Scholar 

  111. Fatahi M, Reddig A, Vijayalaxmi, et al (2016) DNA double-strand breaks and micronuclei in human blood lymphocytes after repeated whole body exposures to 7T magnetic resonance imaging. Neuroimage 133:288–293. https://doi.org/10.1016/j.neuroimage.2016.03.023

    Article  CAS  PubMed  Google Scholar 

  112. Reddig A, Fatahi M, Roggenbuck D et al (2017) Impact of in vivo high-field-strength and ultra-high-field- strength mr imaging on DNA double-strand-break formation in human lymphocytes. Radiology 282:782–789. https://doi.org/10.1148/radiol.2016160794

    Article  PubMed  Google Scholar 

  113. Fasshauer M, Krüwel T, Zapf A et al (2018) Absence of DNA double-strand breaks in human peripheral blood mononuclear cells after 3 Tesla magnetic resonance imaging assessed by γH2AX flow cytometry. Eur Radiol 28:1149–1156. https://doi.org/10.1007/s00330-017-5056-9

    Article  PubMed  Google Scholar 

  114. Suntharalingam S, Kraff O (2018) Healthy volunteers : relationship to formation of DNA double-strand breaks. Radiology 288:529–535

    Article  Google Scholar 

  115. Jalali AH, Mozdarani H, Ghanaati H (2020) The genotoxic effects of contrast enhanced abdominopelvic 3-tesla magnetic resonance imaging on human circulating leucocytes. Eur J Radiol 129:109037. https://doi.org/10.1016/j.ejrad.2020.109037

    Article  PubMed  Google Scholar 

  116. Critchley WR, Reid A, Morris J et al (2018) The effect of 1.5 T cardiac magnetic resonance on human circulating leucocytes. Eur Heart J 39:305–312. https://doi.org/10.1093/eurheartj/ehx646

    Article  CAS  PubMed  Google Scholar 

  117. Rostamzadeh A, Anjamrooz SH, Rezaie MJ et al (2019) Biological effects of magnetic resonance imaging on testis histology and seminiferous tubules morphometry. Oman Med J 34:544–552. https://doi.org/10.5001/omj.2019.98

    Article  PubMed  PubMed Central  Google Scholar 

  118. Lee JW, Kim MS, Kim YJ et al (2011) Genotoxic effects of 3T magnetic resonance imaging in cultured human lymphocytes. Bioelectromagnetics 32:535–542. https://doi.org/10.1002/bem.20664

    Article  CAS  PubMed  Google Scholar 

  119. Szerencsi Á, Kubinyi G, Váliczkó É et al (2013) DNA integrity of human leukocytes after magnetic resonance imaging. Int J Radiat Biol 89:870–876. https://doi.org/10.3109/09553002.2013.804962

    Article  CAS  PubMed  Google Scholar 

  120. Reddig A, Fatahi M, Friebe B et al (2015) Analysis of DNA double-strand breaks and cytotoxicity after 7 tesla magnetic resonance imaging of isolated human lymphocytes. PLoS ONE 10:1–14. https://doi.org/10.1371/journal.pone.0132702

    Article  CAS  Google Scholar 

  121. Friebe B, Godenschweger F, Fatahi M et al (2018) The potential toxic impact of different gadolinium-based contrast agents combined with 7-T MRI on isolated human lymphocytes. Eur Radiol Exp 2:1–9. https://doi.org/10.1186/s41747-018-0069-y

    Article  Google Scholar 

  122. Vijayalaxmi FM, Speck O (2015) Magnetic resonance imaging (MRI): a review of genetic damage investigations. Mutat Res - Rev Mutat Res 764:51–63. https://doi.org/10.1016/j.mrrev.2015.02.002

    Article  CAS  PubMed  Google Scholar 

  123. Hill MA, O’Neill P, McKenna WG (2016) Comments on potential health effects of MRI-induced DNA lesions: quality is more important to consider than quantity. Eur Heart J Cardiovasc Imaging 17:1230–1238. https://doi.org/10.1093/ehjci/jew163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Fatahi M, Karpowicz J, Gryz K et al (2017) Evaluation of exposure to (ultra) high static magnetic fields during activities around human MRI scanners. Magn Reson Mater Physics Biol Med 30:255–264. https://doi.org/10.1007/s10334-016-0602-z

    Article  Google Scholar 

  125. Mild KH, Lundström R, Wilén J (2019) Non-ionizing radiation in Swedish health care—exposure and safety aspects. Int J Environ Res Public Health 16https://doi.org/10.3390/ijerph16071186

  126. Wilén J, Olsrud J, Frankel J, Hansson Mild K (2020) Valid exposure protocols needed in magnetic resonance imaging genotoxic research. Bioelectromagnetics 41:247–257. https://doi.org/10.1002/bem.22257

    Article  PubMed  Google Scholar 

  127. Feychting M (2005) Health effects of static magnetic fields - a review of the epidemiological evidence. Prog Biophys Mol Biol 87:241–246. https://doi.org/10.1016/j.pbiomolbio.2004.08.007

    Article  PubMed  Google Scholar 

  128. Heinrich A, Szostek A, Nees F et al (2011) Effects of static magnetic fields on cognition, vital signs, and sensory perception: a meta-analysis. J Magn Reson Imaging 34:758–763. https://doi.org/10.1002/jmri.22720

    Article  PubMed  Google Scholar 

  129. De Vocht F, Batistatou E, Mölter A et al (2015) Transient health symptoms of MRI staff working with 1.5 and 3.0 Tesla scanners in the UK. Eur Radiol 25:2718–2726. https://doi.org/10.1007/s00330-015-3629-z

    Article  PubMed  Google Scholar 

  130. Schaap K, Portengen L, Kromhout H (2016) Exposure to MRI-related magnetic fields and vertigo in MRI workers. Occup Environ Med 73:161–166

    Article  Google Scholar 

  131. Tian X, Wang D, Feng S et al (2019) Effects of 3.5–23.0 T static magnetic fields on mice: a safety study. Neuroimage 199:273–280. https://doi.org/10.1016/j.neuroimage.2019.05.070

    Article  PubMed  Google Scholar 

  132. Wang S, Luo J, Lv H et al (2019) Safety of exposure to high static magnetic fields (2 T–12 T): a study on mice. Eur Radiol 29:6029–6037. https://doi.org/10.1007/s00330-019-06256-y

    Article  PubMed  Google Scholar 

  133. Miyakoshi J (2006) The review of cellular effects of a static magnetic field. Sci Technol Adv Mater 7:305–307. https://doi.org/10.1016/j.stam.2006.01.004

    Article  CAS  Google Scholar 

  134. Ghodbane S, Lahbib A, Sakly M, Abdelmelek H (2013) Bioeffects of static magnetic fields : oxidative stress, genotoxic effects, and cancer studies. Biomed Res Int 2013https://doi.org/10.1155/2013/602987

  135. Romeo S, Sannino A, Scarfì MR et al (2016) Lack of effects on key cellular parameters of MRC-5 human lung fibroblasts exposed to 370 mT static magnetic field. Sci Rep 6:19398. https://doi.org/10.1038/srep19398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Tian X, Wang D, Zha M et al (2018) Magnetic field direction differentially impacts the growth of different cell types. Electromagn Biol Med 37:114–125. https://doi.org/10.1080/15368378.2018.1458627

    Article  CAS  PubMed  Google Scholar 

  137. Zhang L, Ji X, Yang X, Zhang X (2017) Cell type- and density-dependent effect of 1 T static magnetic field on cell proliferation. Oncotarget 8:13126–13141. https://doi.org/10.18632/oncotarget.14480

    Article  PubMed  PubMed Central  Google Scholar 

  138. Bodewein L, Schmiedchen K, Dechent D et al (2019) Systematic review on the biological effects of electric, magnetic and electromagnetic fields in the intermediate frequency range (300 Hz to 1 MHz). Environ Res 171:247–259. https://doi.org/10.1016/j.envres.2019.01.015

    Article  CAS  PubMed  Google Scholar 

  139. De Vocht F, Liket L, De Vocht A et al (2007) Exposure to alternating electromagnetic fields and effects on the visual and visuomotor systems. Br J Radiol 80:822–828. https://doi.org/10.1259/bjr/22263979

    Article  PubMed  Google Scholar 

  140. Glover PM, Eldeghaidy S, Mistry TR, Gowland PA (2007) Measurement of visual evoked potential during and after periods of pulsed magnetic field exposure. J Magn Reson Imaging 26:1353–1356. https://doi.org/10.1002/jmri.21155

    Article  PubMed  Google Scholar 

  141. International Electrotechnical Commission (IEC) (2007) Magnetic resonance equipment for medical imaging - Part 1: Determination of essential image quality parameters. 62464-1

  142. International Electrotechnical Commission (IEC) (2013) Amendment 1 - Medical electrical equipment - Part 2–33: Particular requirements for the basic safety and essential performance of magnetic resonance equipment for medical diagnosis. 60601–2–33–1

  143. European Committee for Electrotechnical Standardization (CENELEC) (2008) Basic standard on measurement and calculation procedures for human exposure to electric, magnetic and electromagnetic fields (0 Hz - 300 GHz). EN 50413

  144. Council of the European Communities (1999) Council Recommendation of 12 July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz). Publications Office of the European Union, CELEX1, 1999/519/EC

  145. Council of the European Communities (1989) Council Directive 89/391/EEC of 12 June 1989 on the introduction of measures to encourage improvements in the safety and health of workers at work. Off J Eur Communities 183:8. 2004R0726 - v.7 of 05.06.2013

  146. ICNIRP (2020) ICNIRP Guidelines for limiting exposure to electromagnetic fields (100 kHz TO 300 GHz). Health Phys 118:483–524. https://doi.org/10.1097/HP.0000000000001210

    Article  CAS  Google Scholar 

  147. Presidenza della Repubblica Italiana (2016) Decreto Legislativo 1 agosto 2016, n. 159. GU 192:1–15

  148. Ministero della Salute (2018) Decreto Ministeriale 10 agosto 2018. GU 236:1–21

  149. Greenberg TD, Hoff MN, Gilk TB et al (2020) ACR Committee on MR Safety. ACR guidance document on MR safe practices: updates and critical information 2019. J Magn Reson Imaging 51:331–338

  150. US Food and Drug Administration (FDA) Manufacturer and user facility device experience database (MAUDE): file formats for FOI releasable data. www.fda.gov/cdrh/maude.html

  151. International Labour Organization (1998) Technical and ethical guidelines for workers’ health surveillance. Occupational Safety and Health Series No. 72, Geneva

  152. Hocking B, Gobba F (2011) Medical aspects of overexposures to electromagnetic fields. J Heal Saf Environ 27:185–195

    Google Scholar 

  153. Gobba F, Korpinen L (2018) What health surveillance of EMF exposed workers? Occup Environ Med 75:2018

    Google Scholar 

  154. International Commission on Occupational Health (2012) International Code of Ethics for occupational health professionals. 1–19

  155. Wilén J, De VF (2011) Health complaints among nurses working near MRI scanners — a descriptive pilot study. Eur J Radiol 80:510–513. https://doi.org/10.1016/j.ejrad.2010.09.021

    Article  PubMed  Google Scholar 

  156. Friebe B, Wollrab A, Thormann M et al (2015) Sensory perceptions of individuals exposed to the static field of a 7T MRI: a controlled blinded study. J Magn Reson Imaging 41:1675–1681. https://doi.org/10.1002/jmri.24748

    Article  PubMed  Google Scholar 

  157. Zanotti G, Ligabue G, Gobba F (2015) Subjective symptoms and their evolution in a small group of magnetic resonance imaging (MRI) operators recently engaged. Electromagn Biol Med 34:262–264. https://doi.org/10.3109/15368378.2015.1076442

    Article  CAS  PubMed  Google Scholar 

  158. The Council Of European Comminuties (1993) Council Directive 93/42/EEC of 14 June 1993 concerning medical device. 1–43

  159. Nazarian S, Hansford R, Rahsepar AA et al (2017) Safety of magnetic resonance imaging in patients with cardiac devices. N Engl J Med 377:2555–2564. https://doi.org/10.1056/NEJMoa1604267

    Article  PubMed  PubMed Central  Google Scholar 

  160. Tsarna E, Reedijk M, Birks LE et al (2019) Associations of maternal cell-phone use during pregnancy with pregnancy duration and fetal growth in 4 birth cohorts. Am J Epidemiol 188:1270–1280. https://doi.org/10.1093/aje/kwz092

    Article  PubMed  PubMed Central  Google Scholar 

  161. Union E (1992) Council Directive 92/85/EEC of 19 October 1992 on the introduction of measures to encourage improvements in the safety and health at work of pregnant workers and workers who have recently given birth or are breastfeeding. Off J Eur Communities L 348:1–7

    Google Scholar 

  162. Modenese A, Gobba F (2020) Occupational exposure to non-ionizing radiation. Main effects and criteria for health surveillance of workers according to the European Directives. Proc - 2020 IEEE Int Conf Environ Electr Eng 2020 IEEE Ind Commer Power Syst Eur EEEIC / I CPS Eur 2020. https://doi.org/10.1109/EEEIC/ICPSEurope49358.2020.9160831

  163. Friebe B (2020) Editorial for “Subjectively reported Effects Experienced in an Actively Shielded 7T MR: A Large-Scale Study.” J Magn Reson Imaging 52:1277–1278. https://doi.org/10.1002/jmri.27157

    Article  PubMed  Google Scholar 

  164. Theysohn JM, Kraff O, Eilers K et al (2014) Vestibular effects of a 7 tesla MRI examination compared to 1.5 T and 0 T in healthy volunteers. PLoS ONE 9:3–10. https://doi.org/10.1371/journal.pone.0092104

    Article  CAS  Google Scholar 

  165. Fagan AJ, Bitz AK, Björkman-Burtscher IM et al (2021) 7T MR Safety. J Magn Reson Imaging 53:333–346. https://doi.org/10.1002/jmri.27319

    Article  PubMed  Google Scholar 

  166. Hansson B, Markenroth Bloch K, Owman T et al (2020) Subjectively reported effects experienced in an actively shielded 7T MRI: a large-scale study. J Magn Reson Imaging 52:1265–1276. https://doi.org/10.1002/jmri.27139

    Article  PubMed  Google Scholar 

  167. Fatahi M, Demenescu LR, Speck O (2016) Subjective perception of safety in healthy individuals working with 7 T MRI scanners: a retrospective multicenter survey. Magn Reson Mater Phy 29:379–387. https://doi.org/10.1007/s10334-016-0527-6

    Article  Google Scholar 

  168. Bongers S, Christopher Y, Engels H et al (2013) Retrospective assessment of exposure to static magnetic fields during production and development of magnetic resonance imaging systems. Ann Occup Hyg 58:85–102. https://doi.org/10.1093/annhyg/met049

    Article  PubMed  Google Scholar 

  169. Migault L, Bowman JD, Kromhout H et al (2019) Development of a job-exposure matrix for assessment of occupational exposure to high-frequency electromagnetic fields (3 kHz–300 GHz). Ann Work Expo Heal 63:1013–1028. https://doi.org/10.1093/annweh/wxz067

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Hartwig.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The affiliations of the authors has been modified.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartwig, V., Virgili, G., Mattei, F. et al. Occupational exposure to electromagnetic fields in magnetic resonance environment: an update on regulation, exposure assessment techniques, health risk evaluation, and surveillance. Med Biol Eng Comput 60, 297–320 (2022). https://doi.org/10.1007/s11517-021-02435-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02435-6

Keywords

Navigation