Skip to main content
Log in

Concurrently bendable and rotatable continuum tubular robot for omnidirectional multi-core transurethral prostate biopsy

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

A transurethral prostate biopsy device is proposed in this paper, which can shoot a biopsy needle at different angles to take samples from multiple locations within the prostate. Firstly, the traditional prostate biopsy methods, including transrectal prostate biopsy and transperineal prostate biopsy, are introduced and compared. Then, the working principles of the new prostate biopsy procedure are illustrated. The designs of the needle bending system and the flexible needle are presented, and a proofs-of-concept study of the robotic biopsy device is demonstrated. Design parameters, material selection, and control unit are introduced. Experiments are carried out to test and demonstrate the functions of the prototype. Theoretical and measured bending angles are compared and analyzed. The bending system can effectively bend the biopsy needle to any angle between 15 and 45°. The penetration force of the biopsy needle decreases with the increase of the bending angle. The range of rotation of the bending system on one hemisphere is ±25°. Together with the translational motion, the biopsy needle can reach any point within the workspace. Finally, a phantom test and a cadaver experiment were carried out to simulate biopsy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bi J, Zhang Y (2019) US/MRI guided robotic system for the interventional treatment of prostate. Int J Pattern Recog Artif Intell 34:2059014. https://doi.org/10.1142/S0218001420590144

  2. De Silva T, Cool DW, Yuan J, Romagnoli C, Samarabandu J, Fenster A, Ward AD (2017) Robust 2-D-3-D registration optimization for motion compensation during 3-D TRUS-guided biopsy using learned prostate motion data. IEEE Trans Med Imaging 36:2010–2020. https://doi.org/10.1109/TMI.2017.2703150

    Article  Google Scholar 

  3. Eastwood KW, Azimian H, Carrillo B, Looi T, Naguib HE, Drake JM (2016) Kinetostatic design of asymmetric notch joints for surgical robots. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 9–14 Oct. 2016, IEEE, pp 2381–2387. https://doi.org/10.1109/IROS.2016.7759371

  4. Elhawary H, Tse ZTH, Rea M, Zivanovic A, Davies B, Besant C, de Souza N, McRobbie D, Young I, Lamperth M (2010) Robotic system for transrectal biopsy of the prostate: real-time guidance under MRI. IEEE Eng Med Biol Mag 29:78–86. https://doi.org/10.1109/MEMB.2009.935709

    Article  Google Scholar 

  5. Espinosa C, Garcia M, Yepes-Calderon F, McComb JG, Florez H (2020) Prostate cancer diagnosis automation using supervised artificial intelligence. A systematic literature review. In: 3rd International Conference on Applied Informatics, ICAI 2020, October 29, 2020 - October 31, 2020, Ota, Nigeria.  Communications in Computer and Information Science. Springer Science and Business Media Deutschland GmbH, pp 104–115. https://doi.org/10.1007/978-3-030-61702-8_8

  6. Futterer JJ, Verma S, Hambrock T, Yakar D, Barentsz JO (2012) High-risk prostate cancer: value of multi-modality 3T MRI-guided biopsies after previous negative biopsies. Abdom Imaging 37:892–896. https://doi.org/10.1007/s00261-011-9818-6

    Article  Google Scholar 

  7. Gerboni G, Greer JD, Laeseke PF, Hwang GL, Okamura AM (2017) Highly articulated robotic needle achieves distributed ablation of liver tissue. IEEE Robot Autom Lett 2:1367–1374. https://doi.org/10.1109/LRA.2017.2668467

    Article  Google Scholar 

  8. Jelínek F, Arkenbout EA, Henselmans PWJ, Pessers R, Breedveld P (2015) Classification of joints used in steerable instruments for minimally invasive surgery-a review of the state of the art. ASME J Med Devices 9:010801. https://doi.org/10.1115/1.4027035

  9. Lee AY, Yang XY, Lee HJ, Law YM, Huang HH, Sim AS, Lau WK, Lee LS, Cheng CW, Ho HS, Yuen JS, Tay KJ, Chen K (2021) Limitations of overlapping cores in systematic and MRI-US fusion biopsy. Urol Oncol 39:782.e15-782.e21. https://doi.org/10.1016/j.urolonc.2021.02.027

  10. Lehmann T, Sloboda R, Usmani N, Tavakoli M (2018) Model-based needle steering in soft tissue via lateral needle actuation. IEEE Robot Autom Lett 3:3930–3936. https://doi.org/10.1109/LRA.2018.2858001

    Article  Google Scholar 

  11. Lim S, Jun C, Chang D, Petrisor D, Han M, Stoianovici D (2019) Robotic transrectal ultrasound guided prostate biopsy. IEEE Trans Biomed Eng 66:2527–2537. https://doi.org/10.1109/TBME.2019.2891240

    Article  PubMed  PubMed Central  Google Scholar 

  12. Martin PR, Cool DW, Fenster A, Ward AD (2018) A comparison of prostate tumor targeting strategies using magnetic resonance imaging-targeted, transrectal ultrasound-guided fusion biopsy. Med Phys 45:1018–1028. https://doi.org/10.1002/mp.12769

    Article  PubMed  Google Scholar 

  13. Mehrtash A, Ghafoorian M, Pernelle G, Ziaei A, Heslinga FG, Tuncali K, Fedorov A, Kikinis R, Tempany CM, Wells WM, Abolmaesumi P, Kapur T (2019) Automatic needle segmentation and localization in MRI with 3-D convolutional neural networks: application to MRI-targeted prostate biopsy. IEEE Trans Med Imaging 38:1026–1036. https://doi.org/10.1109/TMI.2018.2876796

    Article  PubMed  Google Scholar 

  14. Mendoza E, Whitney JP (2019) A testbed for haptic and magnetic resonance imaging-guided percutaneous needle biopsy. IEEE Robot Autom Lett 4:3177–3183. https://doi.org/10.1109/LRA.2019.2925558

    Article  Google Scholar 

  15. Monfaredi R, Cleary K, Sharma K (2018) MRI robots for needle-based interventions: systems and technology. Ann Biomed Eng 46:1479–1497. https://doi.org/10.1007/s10439-018-2075-x

    Article  Google Scholar 

  16. Navarro-Alarcon D, Singh S, Zhang T, Chung HL, Ng KW, Chow MK, Liu Y (2017) Developing a compact robotic needle driver for MRI-guided breast biopsy in tight environments. IEEE Robot Autom Lett 2:1648–1655. https://doi.org/10.1109/LRA.2017.2678542

    Article  Google Scholar 

  17. Pinto PA, Chung PH, Rastinehad AR, Baccala AA, Kruecker J, Benjamin CJ, Xu S, Yan P, Kadoury S, Chua C, Locklin JK, Turkbey B, Shih JH, Gates SP, Buckner C, Bratslavsky G, Linehan WM, Glossop ND, Choyke PL, Wood BJ (2011) Magnetic resonance imaging/ultrasound fusion guided prostate biopsy improves cancer detection following transrectal ultrasound biopsy and correlates with multiparametric magnetic resonance imaging. J Urol 186:1281–1285. https://doi.org/10.1016/j.juro.2011.05.078

    Article  Google Scholar 

  18. Ryu SC, Quek ZF, Koh JS, Renaud P, Black RJ, Moslehi B, Daniel BL, Cho KJ, Cutkosky MR (2015) Design of an optically controlled MR-compatible active needle. IEEE Trans Robot 31:1–11. https://doi.org/10.1109/TRO.2014.2367351

    Article  CAS  Google Scholar 

  19. Stoianovici D, Chunwoo K, Schafer F, Chien-Ming H, Yihe Z, Petrisor D, Han M (2013) Endocavity ultrasound probe manipulators. IEEE/ASME Trans Mechatron 18:914–921. https://doi.org/10.1109/TMECH.2012.2195325

    Article  Google Scholar 

  20. Stoianovici D, Kim C, Petrisor D, Jun C, Lim S, Ball MW, Ross A, MacUra KJ, Allaf ME (2017) MR safe robot, FDA clearance, safety and feasibility of prostate biopsy clinical trial. IEEE/ASME Trans Mechatron 22:115–126. https://doi.org/10.1109/TMECH.2016.2618362

    Article  Google Scholar 

  21. Stoianovici D, Kim C, Srimathveeravalli G, Sebrecht P, Petrisor D, Coleman J, Solomon SB, Hricak H (2013) MRI-safe robot for endorectal prostate biopsy. IEEE ASME Trans Mechatron 19:1289–1299. https://doi.org/10.1109/TMECH.2013.2279775

    Article  Google Scholar 

  22. Wang W, Pan B, Fu Y, Liu Y (2021) Development of a transperineal prostate biopsy robot guided by MRI-TRUS image. Int J Med Robot 17:e2266. https://doi.org/10.1002/rcs.2266

  23. Xiong J, Xu C, Ibrahim K, Deng H, Xia Z (2021) A mechanism-image fusion approach to calibration of an ultrasound-guided dual-arm robotic brachytherapy system. IEEE ASME Trans Mechatron 1–1. https://doi.org/10.1109/tmech.2021.3055902

  24. Youssef F, Anderson JB (2012) How to perform a transrectal ultrasound scan and prostate biopsy. In, vol 9781447124221. Imaging and Technology in Urology: Principles and Clinical Applications. Springer-Verlag London Ltd, pp 37–41. https://doi.org/10.1007/978-1-4471-2422-1_9

Download references

Funding

This work is supported by the National Key R&D Program of China under Grant 2018YFB1307700 (with subprogram 2018YFB1307703) from the Ministry of Science and Technology (MOST) of China, the Shun Hing Institute of Advanced Engineering (SHIAE project #BME-p1-21, 8115064) at the Chinese University of Hong Kong (CUHK), and Singapore Academic Research Fund under Grant R397000353114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Ren.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, X., Wu, Y., Wu, Q. et al. Concurrently bendable and rotatable continuum tubular robot for omnidirectional multi-core transurethral prostate biopsy. Med Biol Eng Comput 60, 229–238 (2022). https://doi.org/10.1007/s11517-021-02434-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02434-7

Keywords

Navigation