Skip to main content

Advertisement

Log in

Adopting reciprocity theorem in deep transcranial magnetic stimulation problem to design an efficient single source coil array based on nerve cell direction

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Deep transcranial magnetic stimulation (dTMS) plays an important role in the treatment of many diseases. Previous designs rarely considered the direction of the induced electric field (E) with respect to nerve fibers. However, it can be observed from related formulae that the tangential component of E (E effective) has a more significant role in the stimulation of nerve cells. In this paper, a new approach is proposed for designing a single-source coil array (CA) by combining tractography and the reciprocity theorem (RT). This method is a non-iterative procedure that can directly design CAs for the stimulation of each desired target zone without any complicated and slow iterative algorithm. Specifications of CA such as the optimum spatial angle and the best placement of coils are important because the location of the coil around the head and its spatial angle have been shown to have a major effect on induced E. Adoption of the RT yields the optimum specifications of CA and maximum E effective at the stimulation zone. This novel technique can introduce a new approach for the application of CA since it entails a high flexibility, high speed, and good accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Barker AT, Jalinous R, Freeston IL (1985) NON-INVASIVE MAGNETIC STIMULATION OF HUMAN MOTOR CORTEX. Lancet 325:1106–1107. doi:10.1016/s0140-6736(85)92413-4

    Article  Google Scholar 

  2. Boggio PS, Fregni F, Bermpohl F et al (2005) Effect of repetitive TMS and fluoxetine on cognitive function in patients with Parkinson’s disease and concurrent depression. Mov Disord 20:1178–1184. doi:10.1002/mds.20508

    Article  PubMed  Google Scholar 

  3. Roth BJ, Basser PJ (1990) A model of the stimulation of a nerve fiber by electromagnetic induction. IEEE Trans Biomed Eng 37:588–597. doi:10.1109/10.55662

    Article  CAS  PubMed  Google Scholar 

  4. Deng Z-D, Lisanby SH, Peterchev AV (2013) Electric field depth–focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimulation 6:1–13. doi:10.1016/j.brs.2012.02.00

    Article  PubMed  Google Scholar 

  5. Levkovitz Y, Sheer A, Harel EV et al (2011) Differential effects of deep TMS of the prefrontal cortex on apathy and depression. Brain Stimulation 4:266–274. doi:10.1016/j.brs.2010.12.004

    Article  PubMed  Google Scholar 

  6. Bersani FS, Minichino A, Enticott PG et al (2013) Deep transcranial magnetic stimulation as a treatment for psychiatric disorders: a comprehensive review. European Psychiatry 28:30–39. doi:10.1016/j.eurpsy.2012.02.006

    Article  CAS  PubMed  Google Scholar 

  7. Deng Z-D, Lisanby SH, Peterchev AV (2011) Electric field strength and focality in electroconvulsive therapy and magnetic seizure therapy: a finite element simulation study. J Neural Eng 8:016007. doi:10.1088/1741-2560/8/1/016007

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zangen A, Roth Y, Voller B, Hallett M (2005) Transcranial magnetic stimulation of deep brain regions: evidence for efficacy of the h-coil. Clin Neurophysiol 116:775–779. doi:10.1016/j.clinph.2004.11.008

    Article  PubMed  Google Scholar 

  9. Crowther LJ, Marketos P, Williams PI, et al. (2011) Transcranial magnetic stimulation: improved coil design for deep brain investigation. Journal of Applied Physics 109:07B314. doi:10.1063/1.3563076

  10. Meng Y, Hadimani RL, Crowther LJ, et al. (2015) Deep brain transcranial magnetic stimulation using variable “halo coil” system. Journal of Applied Physics 117:17B305. doi:10.1063/1.4913937

  11. Lu M, Ueno S (2015) Deep transcranial magnetic stimulation using figure-of-eight and halo coils. IEEE Trans Magn 51:1–4. doi:10.1109/tmag.2015.2436977

    Google Scholar 

  12. Guadagnin V, Parazzini M, Fiocchi S et al (2016) Deep transcranial magnetic stimulation: modeling of different coil configurations. IEEE Trans Biomed Eng 63:1543–1550. doi:10.1109/tbme.2015.2498646

    Article  PubMed  Google Scholar 

  13. Fox PT, Narayana S, Tandon N et al (2004) Column-based model of electric field excitation of cerebral cortex. Hum Brain Mapp 22:1–14. doi:10.1002/hbm.20006

    Article  PubMed  Google Scholar 

  14. Basser PJ, Pajevic S, Pierpaoli C et al (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44:625–632. doi:10.1002/1522-2594(200010)44:4<625::aid-mrm17>3.0.co;2-o

    Article  CAS  PubMed  Google Scholar 

  15. De Geeter N, Crevecoeur G, Leemans A, Dupré L (2014) Effective electric fields along realistic DTI-based neural trajectories for modelling the stimulation mechanisms of TMS. Phys Med Biol 60:453–471. doi:10.1088/0031-9155/60/2/453

    Article  PubMed  Google Scholar 

  16. Ho SL, Xu G, Fu WN et al (2009) Optimization of array magnetic coil design for functional magnetic stimulation based on improved genetic algorithm. IEEE Trans Magn 45:4849–4852. doi:10.1109/tmag.2009.2025892

    Article  CAS  Google Scholar 

  17. Laudani A, Fulginei FR, Salvini A (2015) TMS array coils optimization by means of CFSO. IEEE Trans Magn 51:1–4. doi:10.1109/tmag.2014.2364176

    Article  Google Scholar 

  18. Gomez L, Cajko F, Hernandez-Garcia L et al (2013) Numerical analysis and design of single-source Multicoil TMS for deep and focused brain stimulation. IEEE Trans Biomed Eng 60:2771–2782. doi:10.1109/tbme.2013.2264632

    Article  PubMed  Google Scholar 

  19. Heller L, van Hulsteyn DB (1992) Brain stimulation using electromagnetic sources: theoretical aspects. Biophys J 63:129–138. doi:10.1016/s0006-3495(92)81587-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Studio CM (2009) Computer simulation technology. GmbH, Darmstadt

    Google Scholar 

  21. Comsol AB (2015) COMSOL Multiphysics v:5.2

  22. Harrington RF (1961) Time-harmonic electromagnetic fields, 9th edn. McGraw-Hill Inc., US, New York

    Google Scholar 

  23. Andreuccetti D, Fossi R, Petrucci C (1997) An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz −100 GHz. In: Based on data published by C. Gabriel et al. in 1996. http://niremf.Ifac.CNR.It/tissprop/. IFAC-CNR, Florence (Italy).

  24. Koponen LM, Nieminen JO, Ilmoniemi RJ (2015) Minimum-energy coils for transcranial magnetic stimulation: application to focal stimulation. Brain Stimulation 8:124–134. doi:10.1016/j.brs.2014.10.002

    Article  PubMed  Google Scholar 

  25. Leemans A, Jeurissen B, Sijbers J, Jones D. (2009) ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. 17th Annual Meeting of Intl Soc Mag Reson Med 209:3537.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Abdolali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohtadi Jafari, A., Abdolali, A. Adopting reciprocity theorem in deep transcranial magnetic stimulation problem to design an efficient single source coil array based on nerve cell direction. Med Biol Eng Comput 56, 13–23 (2018). https://doi.org/10.1007/s11517-017-1663-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1663-5

Keywords

Navigation