Skip to main content
Log in

Effects of muscle fibre shortening on the characteristics of surface motor unit potentials

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Traditionally, studies dealing with muscle shortening have concentrated on assessing its impact on conduction velocity, and to this end, electrodes have been located between the end-plate and tendon regions. Possible morphologic changes in surface motor unit potentials (MUPs) as a result of muscle shortening have not, as yet, been evaluated or characterized. Using a convolutional MUP model, we investigated the effects of muscle shortening on the shape, amplitude, and duration characteristics of MUPs for different electrode positions relative to the fibre–tendon junction and for different depths of the MU in the muscle (MU-to-electrode distance). It was found that the effects of muscle shortening on MUP morphology depended not only on whether the electrodes were between the end-plate and the tendon junction or beyond the tendon junction, but also on the specific distance to this junction. When the electrodes lie between the end-plate and tendon junction, it was found that (1) the muscle shortening effect is not important for superficial MUs, (2) the sensitivity of MUP amplitude to muscle shortening increases with MU-to-electrode distance, and (3) the amplitude of the MUP negative phase is not affected by muscle shortening. This study provides a basis for the interpretation of the changes in MUP characteristics in experiments where both physiological and geometrical aspects of the muscle are varied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Andreassen S, Rosenfalck A (1981) Relationship of intracellular and extracellular action potentials of skeletal muscle fibers. CRC Crit Rev Bioeng 7:267–306

    Google Scholar 

  2. Arendt-Nielsen L, Gantchev N, Sinkjaer T (1992) The influence of muscle length on muscle fibre conduction velocity and development of muscle fatigue. Electroencephalogr Clin Neurophysiol 85(3):166–172

    Article  CAS  PubMed  Google Scholar 

  3. Boe S, Stashuk DW, Doherty TJ (2004) Motor unit number estimation by decomposition-enhanced spike-triggered averaging: control data, test-retest reliability, and contractile level effects. Muscle Nerve 29:693–699

    Article  PubMed  Google Scholar 

  4. Brown T, Galea V, McComas AJ (1996) Muscle shortening, response latency, and conduction velocity. Muscle Nerve 19(11):1493–1495

    Article  CAS  PubMed  Google Scholar 

  5. Calder KM, Hall LA, Lester SM, Inglis JG, Gabriel DA (2005) Reliability of the biceps brachii M-wave. J Neuroeng Rehabil 2:33

    Article  PubMed Central  PubMed  Google Scholar 

  6. Cupido CM, Galea V, McComas AJ (1996) Potentiation and depression of the M wave in human biceps brachii. J Physiol 491(2):541–550

    CAS  PubMed  Google Scholar 

  7. Dimitrov GV, Dimitrova NA (1998) Precise and fast calculation of the motor unit potentials detected by a point and rectangular plate electrode. Med Eng Phys 20(5):374–381

    Article  CAS  PubMed  Google Scholar 

  8. Dimitrova NA, Dimitrov AG, Dimitrov GV (1999) Calculation of extracellular potentials produced by an inclined muscle fibre at a rectangular plate electrode. Med Eng Phys 21(8):583–588

    Article  CAS  PubMed  Google Scholar 

  9. Dimitrova NA, Dimitrov GV, Nikitin OA (2001) Longitudinal variations of characteristic frequencies of skeletal muscle fibre potentials detected by a bipolar or multi-electrode. J Med Eng Technol 25(1):34–40

    Article  CAS  PubMed  Google Scholar 

  10. Dimitrova NA, Dimitrov GV, Nikitin OA (2002) Neither highpass filtering nor mathematical differentiation of the EMG signals can considerably reduce cross-talk. J Electromyogr Kinesiol 12(4):235–246

    Article  CAS  PubMed  Google Scholar 

  11. Falces JR, Trigueros AM, Useros LG, Carreño IR, Irujo JN (2005) A mathematical analysis of SFAP convolutional models. IEEE Trans Biomed Eng 52(5):769–783

    Article  PubMed  Google Scholar 

  12. Farina D, Muhammad W, Fortunato E, Meste O, Merletti R, Rix H (2001) Estimation of single motor unit conduction velocity from surface electromyogram signals detected with linear electrode arrays. Med Biol Eng Comput 39:225–236

    Article  CAS  PubMed  Google Scholar 

  13. Farina D, Merletti R, Nazzaro M, Caruso I (2001) Effect of joint angle on EMG variables in leg and thigh muscles. IEEE Eng Med Biol Mag 211:62–69

    Article  Google Scholar 

  14. Farina D, Cescon C, Merletti R (2002) Influence of anatomical, physical, and detection-system parameters on surface EMG. Biol Cybern 86(6):445–456

    Article  PubMed  Google Scholar 

  15. Farina D, Merletti R, Indino B, Nazzaro M, Pozzo M (2002) Crosstalk between knee extensor muscles. Experimental and model results. Muscle Nerve 26:681–695

    Article  PubMed  Google Scholar 

  16. Farina D, Merletti R, Enoka RM (2004) The extraction of neural strategies from the surface EMG. J Appl Physiol 96(4):1486–1495

    Article  PubMed  Google Scholar 

  17. Gydikov A, Kosarov D (1972) Volume conduction of the potentials from separate motor units in human muscle. Electromyogr Clin Neurophysiol 12(2):127–147

    CAS  PubMed  Google Scholar 

  18. Gydikov A, Kosarov D (1973) The influence of various factors on the shape of the myopotentials in using monopolax electrodes. Electromyogr Clin Neurophysiol 13:319–343

    CAS  PubMed  Google Scholar 

  19. Gydikov A, Gerilovsky L, Radicheva N, Trayanova N (1986) Influence of the muscle fibre end geometry on the extracellular potentials. Biol Cybern 54(1):1–8

    Article  CAS  PubMed  Google Scholar 

  20. Griep PAM, Boon KL, Stegeman DF (1978) A study of the motor unit action potential by means of computer simulation. Biol Cybern 30:221–230

    Article  CAS  PubMed  Google Scholar 

  21. Hermens HJ, Freriks B (1997) The state of the art in sensor placement procedures of surface electromyography. Deliverable 5, SENIAM European Concerted Action, Enschede

  22. Ichinose Y, Kawakami Y, Ito M, Fukunaga T (1997) Estimation of active force-length characteristics of human vastus lateralis muscle. Acta Anat (Basel) 159(2–3):78–83

    Article  CAS  Google Scholar 

  23. Karamanidis K, Stafilidis S, DeMonte G, Morey-Klapsing G, Brüggemann GP, Arampatzis A (2005) Inevitable joint angular rotation affects muscle architecture during isometric contraction. J Electromyogr Kinesiol 15(6):608–616

    Article  PubMed  Google Scholar 

  24. Kawakami Y, Nakai K, Maganaris CN, Oda T, Chino K, Fukunaga T (2001) In vivo estimation of human achilles tendon momento arm based on ultrasonography. In: Twenty-fifth annual meeting of the American Society of Biomechanics, pp 41–42

  25. Kossev A, Gantchev N, Gydikov A, Gerasimenko Y, Christova P (1992) The effect of muscle fiber length change on motor units potentials propagation velocity. Electromyogr Clin Neurophysiol 32(6):287–294

    CAS  PubMed  Google Scholar 

  26. Lateva ZC, Dimitrova NA, Dimitrov GV (1993) Effect of recording electrode position along a muscle fibre on surface potential power spectrum. J Electromyogr Kinesiol 3(4):195–204

    Article  CAS  PubMed  Google Scholar 

  27. Lateva ZC, McGill KC, Burgar CG (1996) Anatomical and electrophysiological determinants of the human thenar compound muscle action potential. Muscle Nerve 19(11):1457–1468

    Article  CAS  PubMed  Google Scholar 

  28. Lieber RL (1992) The production of movement. Skeletal muscle structure and function. Williams & Wilkins, Baltimore, pp 111–158

    Google Scholar 

  29. Lindstrom L, Magnusson R, Petersen I (1970) Muscular fatigue and action potential conduction velocity changes studied with frequency analysis of EMG signals. Electromyography 10:341–356

    CAS  PubMed  Google Scholar 

  30. Mademli L, Arampatzis A (2005) Behaviour of the human gastrocnemius muscle architecture during submaximal isometric fatigue. Eur J Appl Physiol 94(5–6):611–617

    Article  PubMed  Google Scholar 

  31. Masuda T, Miyano H, Sadoyama T (1985) The position of innervation zones in the biceps brachii investigated by surface electromyography. IEEE Trans Biomed Eng 32:36–42

    Article  CAS  PubMed  Google Scholar 

  32. Mesin L, Joubert M, Hanekom T, Merletti R, Farina D (2006) A finite element model for describing the effect of muscle shortening on surface EMG. IEEE Trans Biomed Eng 53(4):593–600

    Article  PubMed  Google Scholar 

  33. Nandedkar S, Stålberg E (1983) Simulation of single muscle fiber action potentials. Med Biol Eng Comput 21:158–165

    Article  CAS  PubMed  Google Scholar 

  34. Nandedkar S, Sanders DB (1988) Simulation of concentric needle EMG motor unit action potentials. Muscle Nerve 11:151–159

    Article  CAS  PubMed  Google Scholar 

  35. Narici MV, Binzoni T, Hiltbrand E, Fasel J, Terrier F, Cerretelli P (1996) In vivo human gastrocnemius architecture with changing joint angle at rest and during graded isometric contraction. J Physiol 496(1):287–297

    CAS  PubMed  Google Scholar 

  36. Rau G, Disselhorst-Klug C, Silny J (1997) Noninvasive approach to motor unit characterization: muscle structure, membrane dynamics and neuronal control. J Biomech 30(5):441–446

    Article  CAS  PubMed  Google Scholar 

  37. Roeleveld K, Stegeman DF, Vingerhoets HM, Van Oosterom A (1997) The motor unit potential distribution over the skin surface and its use in estimating the motor unit location. Acta Physiol Scand 161(4):465–472

    Article  CAS  PubMed  Google Scholar 

  38. Rodriguez-Falces J, Navallas J, Gila L, Malanda A, Dimitrova NA (2012) Influence of the shape of intracellular potentials on the morphology of single-fiber extracellular potentials in human muscle fibers. Med Biol Eng Comput 50(5):447–460

    Article  PubMed  Google Scholar 

  39. Rosenfalck P (1969) Intra- and extracellular fields of active nerve and muscle fibers A physico-mathematical analysis of different models. Acta Physiol Scand 321:1–168

    CAS  Google Scholar 

  40. Saitou K, Masuda T, Michikami D, Kojima R, Okada M (2000) Innervation zones of the upper and lower limb muscles estimated by using multichannel surface EMG. J Hum Ergol (Tokyo) 29:35–52

    CAS  Google Scholar 

  41. Schulte E, Farina D, Merletti R, Rau G, Disselhorst-Klug C (2004) Influence of muscle fibre shortening on estimates of conduction velocity and spectral frequencies from surface electromyographic signals. Med Biol Eng Comput 42(4):477–486

    Article  CAS  PubMed  Google Scholar 

  42. Shefner JM, Jillapalli D, Bradshaw DY (1999) Reducing intersubject variability in motor unit number estimation. Muscle Nerve 22:1457–1460

    Article  CAS  PubMed  Google Scholar 

  43. Simmons Z, Epstein DK, Borg B, Mauger DT, Kothari MJ, Shefner JM (2001) Reproducibility of motor unit number estimation. Muscle Nerve 24:467–473

    Article  CAS  PubMed  Google Scholar 

  44. Tokunaga T, Baba S, Tanaka M, Kashiwagi K, Kimura K, Kawazoe T (1998) Two-dimensional configuration of the myoneural junctions of human masticatory muscle detected with matrix electrode. J Oral Rehabil 25:329–334

    Article  CAS  PubMed  Google Scholar 

  45. Zwarts MJ, Stegeman DF (2003) Multichannel surface EMG: basic aspects and clinical utility. Muscle Nerve 28(1):1–17

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Rodriguez-Falces.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez-Falces, J., Place, N. Effects of muscle fibre shortening on the characteristics of surface motor unit potentials. Med Biol Eng Comput 52, 95–107 (2014). https://doi.org/10.1007/s11517-013-1112-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-013-1112-z

Keywords

Navigation