Skip to main content
Log in

Non-linear adaptive controllers for an over-actuated pneumatic MR-compatible stepper

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Pneumatics is one of the few actuation principles that can be used in an MR environment, since it can produce high forces without affecting imaging quality. However, pneumatic control is challenging, due to the air high compliance and cylinders non-linearities. Furthermore, the system’s properties may change for each subject. Here, we present novel control strategies that adapt to the subject’s individual anatomy and needs while performing accurate periodic gait-like movements with an MRI compatible pneumatically driven robot. In subject-passive mode, an iterative learning controller (ILC) was implemented to reduce the system’s periodic disturbances. To allow the subjects to intend the task by themselves, a zero-force controller minimized the interaction forces between subject and robot. To assist patients who may be too weak, an assist-as-needed controller that adapts the assistance based on online measurement of the subject’s performance was designed. The controllers were experimentally tested. The ILC successfully learned to reduce the variability and tracking errors. The zero-force controller allowed subjects to step in a transparent environment. The assist-as-needed controller adapted the assistance based on individual needs, while still challenged the subjects to perform the task. The presented controllers can provide accurate pneumatic control in MR environments to allow assessments of brain activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bakker M, Verstappen CCP, Bloem BR, Toni I (2007) Recent advances in functional neuroimaging of gait. J Neural Transm 114(10):1323–1331

    Article  PubMed  CAS  Google Scholar 

  2. Bristow DA, Tharayil M, Alleyne AG (2006) A survey of iterative learning control. Control Syst IEEE 26(3):96–114

    Article  Google Scholar 

  3. Chapuis D, Gassert R, Ganesh G, Burdet E, Bleuler H (2006) Investigation of a cable transmission for the actuation of MR compatible haptic interfaces. In: Proceedings 1st International Conference on Biomedical Robotics and Biomechatronics, IEEE/RAS- EMBS, Italy, pp 426–431

  4. Chinzei K, Hata N, Jolesz FA, Kikinis R (2000) Surgical assist robot for the active navigation in the intraoperative MRI: hardware design issues. In: Proceedings International Conference on Intelligent Robots and Systems, IEEE/RSJ, Japan, pp 727–732

  5. Dan S, Alexandru P, Doru P, Dumitru M, Louis K (2007) A new type of motor: pneumatic step motor. IEEE/ASME Trans Mechatron 12(1):98–106

    Article  Google Scholar 

  6. Dietz V, Gollhofer A, Kleiber M, Trippel M (1992) Regulation of bipedal stance: dependency on “load” receptors. Exp Brain Res 89(1):229–231

    Article  PubMed  CAS  Google Scholar 

  7. Dietz V, Duysens J (2000) Significance of load receptor input during locomotion: a review. Gait Posture 11(2):102–110

    Article  PubMed  CAS  Google Scholar 

  8. Dietz V, Muller R, Colombo G (2002) Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain 125(12):2626–2634

    Article  PubMed  Google Scholar 

  9. DiMaio SP, Pieper S, Chinzei K, Hata N, Haker SJ, Kacher DF, Fichtinger G, Tempany CM, Kikinis R (2007) Robot-assisted needle placement in open MRI: system architecture, integration and validation. Comput Aided Surg 12(1):15–24

    PubMed  CAS  Google Scholar 

  10. Emken JL, Benitez R, Reinkensmeyer DJ (2007) Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed. J Neuroeng Rehabil 4:8

    Article  PubMed  Google Scholar 

  11. Emken JL, Harkema SJ, Beres-Jones J, Ferreira CK, Reinkensmeyer DJ (2008) Feasibility of manual teach-and-replay and continuous impedance shaping for robotic locomotor training following spinal cord injury. IEEE Trans Biomed Eng 55:322–334

    Article  PubMed  Google Scholar 

  12. Fennessy FM, Tuncali K, Morrison PR, Tempany CM (2010) MR imaging-guided interventions in the genitourinary tract: an evolving concept. Magn Reson Imaging Clin N Am 18(1):11–28

    Article  PubMed  Google Scholar 

  13. Fischer GS, Iordachita I, Csoma C, Tokuda J, DiMaio SP, Tempany CM, Hata N, Fichtinger G (2008) MRI-compatible pneumatic robot for transperineal prostate needle placement. IEEE/ASME Trans Mechatron 13(3):295–305

    Article  Google Scholar 

  14. Flueckiger M, Bullo M, Chapuis D, Gassert R, Perriard Y (2005) fMRI compatible haptic interface actuated with traveling wave ultrasonic motor. In: Proceedings Industry Applications Conference, IEE/IAS, Hong Kong, pp 2075–2082

  15. Ganesh G, Gassert R, Burdet E, Bleuler H (2004) Dynamics and control of an MRI compatible master-slave system with hydrostatic transmission. In: Proceedings International Conference on Robotics and Automation, IEEE, New Orleans, pp 1288–1294

  16. Gassert R, Moser R, Burdet E, Bleuler H (2006) MRI/fMRI-compatible robotic system with force feedback for interaction with human motion. IEEE/ASME Trans Mechatron 11(2):216–224

    Article  Google Scholar 

  17. Hempel E, Fischer H, Gumb L, Höhn T, Krause H, Voges U, Breitwieser H, Gutmann B, Durke J, Bock M, Melzer A (2003) An MRI-compatible surgical robot for precise radiological interventions. Comput Aided Surg 8(4):180–191

    Article  PubMed  Google Scholar 

  18. Hollnagel C, Brügger M, Vallery H, Wolf P, Dietz V, Kollias S, Riener R (2011) Brain activity during stepping: a novel MRI-compatible device. J Neurosci Methods 201(1):124–130

    Article  PubMed  Google Scholar 

  19. Israel JF, Campbell DD, Kahn JH, Hornby TG (2006) Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury. Phys Ther 86(11):1466–1478

    Article  PubMed  Google Scholar 

  20. Khanicheh A, Muto A, Triantafyllou C, Weinberg B, Astrakas L, Tzika A, Mavroidis C (2006) fMRI-compatible rehabilitation hand device. J NeuroEng Rehabil 3(1):24

    Article  PubMed  Google Scholar 

  21. Khanicheh A, Mintzopoulos D, Weinberg B, Tzika AA, Mavroidis C (2008) MR_CHIROD v. 2: magnetic resonance compatible smart hand rehabilitation device for brain imaging. IEEE Trans Neural Syst Rehabil Eng 16(1):91–98

    Article  PubMed  Google Scholar 

  22. Lotze M, Braun C, Birbaumer N, Anders S, Cohen LG (2003) Motor learning elicited by voluntary drive. Brain 126(4):866–872

    Article  PubMed  Google Scholar 

  23. Marchal-Crespo L, Reinkensmeyer D (2009) Review of control strategies for robotic movement training after neurologic injury. J NeuroEng Rehabil 6(1):20

    Article  PubMed  Google Scholar 

  24. Marchal-Crespo L, McHughen SA, Cramer SC, Reinkensmeyer DJ (2010) The effect of aging and haptic guidance on motor learning of a steering task. Exp Brain Res 201(2):209–220

    Article  PubMed  Google Scholar 

  25. Perez MA, Lungholt BK, Nyborg K, Nielsen JB (2004) Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Exp Brain Res 159(2):197–205

    Article  PubMed  Google Scholar 

  26. Pondman KM, Fütterer JJ, ten Haken B, Schultze Kool LJ, Witjes JA, Hambrock T, Macura KJ, Barentsz JO (2008) MR-guided biopsy of the prostate: an overview of techniques and a systematic review. Eur Urol 54(3):517–527

    Article  PubMed  Google Scholar 

  27. Riener R, Lunenburger L, Jezernik S, Anderschitz JM, Colombo G, Dietz V (2005) Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng 13(3):380–394

    Article  PubMed  Google Scholar 

  28. Riener R, Villgrattner T, Kleiser R, Nef T, Kollias S (2005) fMRI-compatible electromagnetic haptic interface. In: Proceedings 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS, Shanghai, pp 7024–7027

  29. Timmermans AA, Seelen HAM, Willmann RD, Kingma H (2009) Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design. J NeuroEng Rehabil 6:1

    Article  PubMed  Google Scholar 

  30. Tsekos NV, Khanicheh A, Christoforou E, Mavroidis C (2007) Magnetic resonance-compatible robotic and mechatronics systems for image-guided interventions and rehabilitation: a review study. Annu Rev Biomed Eng 9(1):351–387

    Article  PubMed  CAS  Google Scholar 

  31. Xiang F, Wikander J (2004) Block-oriented approximate feedback linearization for control of pneumatic actuator system. Control Eng Pract 12(4):387–399

    Article  Google Scholar 

  32. Yu NB, Riener R (2006) Review on MR-compatible robotic systems. Proceedings 1st International Conference on Biomedical Robotics and Biomechatronics, IEEE/RAS-EMBS, New York, pp 722–726

  33. Yu N, Murr W, Blickenstorfer A, Kollias S, Riener R (2007) An fMRI compatible haptic interface with pneumatic actuation. In: Proceedings 10th International Conference on Rehabilitation Robotics, IEEE, Netherlands, pp 714–720

  34. Yu N, Hollnagel C, Blickenstorfer A, Kollias S, Riener R (2008) fMRI-compatible robotic interfaces with fluidic actuation. In: Robotics: Science and Systems Conference, Zurich

  35. Yu N, Hollnagel C, Blickenstorfer A, Kollias S, Riener R (2008) Comparison of MRI-compatible mechatronic systems with hydrodynamic and pneumatic actuation. IEEE/ASME Trans Mechatron 13(3):268–277

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the EMDO foundation, Koster foundation, International foundation of paraplegia, and the Swiss National Science Foundation (SNF). Laura Marchal-Crespo holds a Marie Curie International income fellowship PIIF-GA-2010-272289. We thank Alessandro Rotta and Andreas Brunschweiler for their support in machining and assembling of MARCOS, Andrew Pennycott for proofreading, and Jasmin Schneider for her support with EMG recordings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Marchal-Crespo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollnagel, C., Vallery, H., Schädler, R. et al. Non-linear adaptive controllers for an over-actuated pneumatic MR-compatible stepper. Med Biol Eng Comput 51, 799–809 (2013). https://doi.org/10.1007/s11517-013-1050-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-013-1050-9

Keywords

Navigation