Skip to main content
Log in

Asymptotic model of electrical stimulation of nerve fibers

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

We present a novel theory and computational algorithm for modeling electrical stimulation of nerve fibers in three dimensions. Our approach uses singular perturbation to separate the full 3D boundary value problem into a set of 2D “transverse” problems coupled with a 1D “longitudinal” problem. The resulting asymptotic model contains not one but two activating functions (AF): the longitudinal AF that drives the slow development of the mean transmembrane potential and the transverse AF that drives the rapid polarization of the fiber in the transverse direction. The asymptotic model is implemented for a prototype 3D cylindrical fiber with a passive membrane in an isotropic extracellular region. The validity of this approach is tested by comparing the numerical solution of the asymptotic model to the analytical solutions. The results show that the asymptotic model predicts steady-state transmembrane potential directly under the electrodes with the root mean square error of 0.539 mV, i.e., 1.04% of the maximum transmembrane potential. Thus, this work has created a computationally efficient algorithm that facilitates studies of the complete spatiotemporal dynamics of nerve fibers in three dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Altman KW, Plonsey R (1988) Development of a model for point source electric fibre bundle stimulation. Med Biol Eng Comput 26:466–475

    Article  PubMed  CAS  Google Scholar 

  2. Basser PJ (1993) Cable equation for a myelinated axon derived from its microstructure. Med Biol Eng Comput 31:S87–S92

    Article  PubMed  Google Scholar 

  3. Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower JM, Diesmann M, Morrison A, Goodman PH, Harris FC Jr, Zirpe M, Natschlger T, Pecevski D, Ermentrout B, Djurfeldt M, Lansner A, Rochel O, Vieville T, Muller E, Davison AP, Boustani SE, Destexhe A (2007) Simulation of networks of spiking neurons: a review of tools and strategies. Comput Neurosci 23:349–398

    Article  Google Scholar 

  4. Clark J, Plonsey R (1966) A mathematical evaluation of the core conductor model. Biophys J 6:95–112

    Article  PubMed  CAS  Google Scholar 

  5. Crank J, Nicolson P (1947) Practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. Proc Camb Phil Soc 43:50–67

    Article  Google Scholar 

  6. Dahlquist G, Björck A (1974) Numerical Methods. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  7. Dixon C (1971) Applied mathematics of science and engineering. Wiley, New York

    Google Scholar 

  8. Greenberg RJ, Velte TJ, Humayun MS, Scarlatis GN, De Juan E Jr (1999) A computational model of electrical stimulation of the retinal ganglion cell. IEEE Trans Biomed Eng 46:505–514

    Article  PubMed  CAS  Google Scholar 

  9. Grill W, Kirsch R (2000) Neuroprosthetic applications of electrical stimulation. Assist Technol 12:6–20

    Article  PubMed  CAS  Google Scholar 

  10. Hinch EJ (1991) Perturbation methods. Cambridge University Press, Cambridge, UK

    Google Scholar 

  11. Hodgkin AL, Rushton WAH (1946) The electrical constants of a crustacean nerve fibre. Proc Roy Soc B 133:444–479

    Article  Google Scholar 

  12. Holsheimer J (1998) Computer modelling of spinal cord stimulation and its contribution to therapeutic efficacy. Spinal Cord 36:531–540

    Article  PubMed  CAS  Google Scholar 

  13. Joshi RP, Song J (2010) Model analysis of electric fields induced by high-voltage pulsing in cylindrical nerves. IEEE Trans Plasma Sci 38:2894–2900

    Article  CAS  Google Scholar 

  14. Joucla S, Yvert B (2009) The “mirror” estimate: an intuitive predictor of membrane polarization during extracellular stimulation. Biophys J 96:3495–3508

    Article  PubMed  CAS  Google Scholar 

  15. Krassowska W, Neu JC (1994) Response of a single cell to an external electric field. Biophys J 66:1768–1776

    Article  PubMed  CAS  Google Scholar 

  16. Leon LJ, Hogues H, Roberge FA (1993) A model study of extracellular stimulation of cardiac cells. IEEE Trans Biomed Eng 40:1307–1319

    Article  PubMed  CAS  Google Scholar 

  17. Lopreore CL, Bartol TM, Coggan JS, Keller DX, Sosinsky GE, Ellisman MH, Sejnowski TJ (2008) Computational modeling of three-dimensional electrodiffusion in biological systems: application to the node of Ranvier. Biophys J 95:2624–2635

    Article  PubMed  CAS  Google Scholar 

  18. Mahnam A, Hashemi SMR, Grill WM (2008) Computational evaluation of methods for measuring the spatial extent of neural activation. J Neurosci Methods 173:153–164

    Article  PubMed  Google Scholar 

  19. Mclntyre CC, Miocinovic S, Butson CR (2007) Computational analysis of deep brain stimulation. Expert Rev Med Devices 4:615–622

    Article  Google Scholar 

  20. McNeal DR (1976) Analysis of a model for excitation of myelinated nerve. IEEE Trans Biomed Eng 23:329–337

    Article  PubMed  CAS  Google Scholar 

  21. Miranda P, Correia L, Salvador R, Basser P (2007) Tissue heterogeneity as a mechanism for localized neural stimulation by applied electric fields. Phys Med Biol 52:5603–5617

    Article  PubMed  CAS  Google Scholar 

  22. Neu JC, Krassowska W (1993) Homogenization of syncytial tissues. Crit Rev Biomed Eng 21:137–199

    PubMed  CAS  Google Scholar 

  23. Pickard W (1968) A contribution to the electromagnetic theory of the unmyelinated axon. Math Biosc 2:111–121

    Article  Google Scholar 

  24. Pucihar G, Miklavčič D, Kotnik T (2009) A time-dependent numerical model of transmembrane voltage inducement and electroporation of irregularly shaped cells. IEEE Trans Biomed Eng 56:1491–1501

    Article  PubMed  Google Scholar 

  25. Rattay F (1986) Analysis of models for external stimulation of axons. IEEE Trans Biomed Eng 33:974–977

    Article  PubMed  CAS  Google Scholar 

  26. Rattay F, Resatz S, Lutter P, Minassian K, Jilge B, Dimitrijevic M (2003) Mechanisms of electrical stimulation with neural prostheses. Neuromodulation 6:42–56

    Article  PubMed  CAS  Google Scholar 

  27. Roth BJ (1994) Mechanisms for electrical stimulation of excitable tissue. Crit Rev Biomed Eng 22:253–305

    PubMed  CAS  Google Scholar 

  28. Ruohonen J, Panizza M, Nilsson J, Ravazzani P, Grandori F, Tognola G (1996) Transverse-field activation mechanism in magnetic stimulation of peripheral nerves. Electroencephalogr Clin Neurophysiol 101:167–174

    Article  PubMed  CAS  Google Scholar 

  29. Rutten W (2002) Selective electrical interfaces with the nervous system. Annu Rev Biomed Eng 4:407–452

    Article  PubMed  CAS  Google Scholar 

  30. Schnabel V, Struijk JJ (2001) Evaluation of the cable model for electrical stimulation of unmyelinated nerve fibers. IEEE Trans Biomed Eng 48:1027–1033

    Article  PubMed  CAS  Google Scholar 

  31. Stewart DA, Gowrishankar TR, Weaver JC (2004) Transport lattice approach to describing cell electroporation: use of a local asymptotic model. IEEE Trans Plasma Sci 32:1696–1708

    Article  Google Scholar 

  32. Wang Y, Shen Q, Jiang D (2001) A modified cable function for represent the excitation of peripheral nerves by transverse field induced by pulsed magnetic field. In: Proceedings of the 23rd annual EMBS international conference, Istanbul, Turkey, October 25–26, pp 896–898

  33. Wikswo JP Jr, Lin SF, Abbas RA (1995) Virtual electrodes in cardiac tissue: a common mechanism for anodal and cathodal stimulation. Biophys J 69:2195–2210

    Article  PubMed  CAS  Google Scholar 

  34. Ying W, Henriquez CS (2007) Hybrid finite element method for describing the electrical response of biological cells to applied fields. IEEE Trans Biomed Eng 54:611–620

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanda Krassowska Neu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 57 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cranford, J.P., Kim, B.J. & Krassowska Neu, W. Asymptotic model of electrical stimulation of nerve fibers. Med Biol Eng Comput 50, 243–251 (2012). https://doi.org/10.1007/s11517-012-0870-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-0870-3

Keywords

Navigation