Skip to main content
Log in

Multivariate short-term heart rate variability: a pre-diagnostic tool for screening heart disease

  • Original Articles
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

This study has aimed to develop a novel pre-diagnostic tool for primary care screening of heart disease based on multivariate short-term heart rate variability (HRV) analyzed by linear (time and frequency domain) and nonlinear methods (compression entropy (CE), detrended fluctuation analysis (DFA), Poincaré plot analysis, symbolic dynamics) applied to 5-min ECG segments. Firstly, we applied HRV analysis to separate healthy subjects (REF) from heart disease patients (PAT). Then to optimize the results, we subdivided both groups according to gender: REF (♂ = 78, ♀ = 53) versus PAT (♂ = 378, ♀ = 115). Finally, we divided REF and PAT into two age subgroups (30–50 years vs. 51-70 years of age) to consider the influence of age on HRV. Heart disease patients were classified using a scoring system based on cut-off values calculated from all HRV indices obtained from the REF. After combining the optimum indices from all different analyzing methods, sensitivities of more than 72% and a specificity of 100% in all subgroups were revealed. Nonlinear indices proved to be better for discriminating heart disease patients from healthy subjects. Multivariate short-term HRV, analyzed by both linear and nonlinear methods appears to be a suitable pre-diagnostic tool for screening heart disease in primary care settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baumert M et al (2004) Forecasting of life threatening arrhythmias using the compression entropy of heart rate. Methods Infect Med 43(2):202–206

    CAS  Google Scholar 

  2. Bigger JT Jr et al (1992) Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation 85(1):164–171

    PubMed  Google Scholar 

  3. Brennan M, Palaniswami M, Kamen P (2002) Poincare plot interpretation using a physiological model of HRV based on a network of oscillators. Am J Physiol Heart Circ Physiol 283(5):H1873–H1886

    CAS  PubMed  Google Scholar 

  4. Glassman AH et al (2007) Heart rate variability in acute coronary syndrome patients with major depression: influence of sertraline and mood improvement. Arch Gen Psychiatry 64(9):1025–1031

    Article  PubMed  Google Scholar 

  5. Goernig M et al (2008) Peripheral arterial disease alters heart rate variability in cardiovascular patients. Pacing Clin Electrophysiol 31(7):858–862

    Article  PubMed  Google Scholar 

  6. Greiser KH et al (2009) Cardiovascular diseases, risk factors and short-term heart rate variability in an elderly general population: the CARLA study 2002–2006. Eur J Epidemiol 24(3):123–142

    Article  PubMed  Google Scholar 

  7. Halpert I et al (1996) Reinnervation of the transplanted human heart as evidenced from heart rate variability studies. Am J Cardiol 77(2):180–183

    Article  CAS  PubMed  Google Scholar 

  8. Huang H-H et al (2008) Using a short-term parameter of heart rate variability to distinguish awake from isoflurane anesthetic states. Med Biol Eng Comput 46(10):977–984

    Article  PubMed  Google Scholar 

  9. Kamen PW, Krum H, Tonkin AM (1996) Poincare plot of heart rate variability allows quantitative display of parasympathetic nervous activity in humans. Clin Sci (Lond) 91(2):201–208

    CAS  Google Scholar 

  10. Kleiger RE et al (1987) Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 59(4):256–262

    Article  CAS  PubMed  Google Scholar 

  11. Kurths J et al (1995) Quantitative analysis of heart rate variability. Chaos 5(1):88–94

    Article  PubMed  Google Scholar 

  12. Lau S et al (2006) Low HRV entropy is strongly associated with myocardial infarction. Biomed Tech (Berl) 51(4):186–189

    Article  Google Scholar 

  13. Maestri R et al (2007) Nonlinear indices of heart rate variability in chronic heart failure patients: redundancy and comparative clinical value. J Cardiovasc Electrophysiol 18(4):425–433

    Article  PubMed  Google Scholar 

  14. Makikallio TH et al (1999) Fractal analysis of heart rate dynamics as a predictor of mortality in patients with depressed left ventricular function after acute myocardial infarction. TRACE Investigators. TRAndolapril Cardiac Evaluation. Am J Cardiol 83(6):836–839

    Article  CAS  PubMed  Google Scholar 

  15. Malliani A et al (1991) Cardiovascular neural regulation explored in the frequency domain. Circulation 84(2):482–492

    CAS  PubMed  Google Scholar 

  16. McNames J, Aboy M (2006) Reliability and accuracy of heart rate variability metrics versus ECG segment duration. Med Biol Eng Comput 44(9):747–756

    Article  PubMed  Google Scholar 

  17. Peña MA et al (2009) Applying fractal analysis to short sets of heart rate variability data. Med Biol Eng Comput 47(7):709–717

    Article  PubMed  Google Scholar 

  18. Peng CK et al (1995) Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5(1):82–87

    Article  CAS  PubMed  Google Scholar 

  19. Porta A et al (2001) Entropy, entropy rate, and pattern classification as tools to typify complexity in short heart period variability series. IEEE Trans Biomed Eng 48(11):1282–1291

    Article  CAS  PubMed  Google Scholar 

  20. Porta A et al (2007) An integrated approach based on uniform quantization for the evaluation of complexity of short-term heart period variability: application to 24 h Holter recordings in healthy and heart failure humans. Chaos 17(1):015117

    Article  CAS  PubMed  Google Scholar 

  21. Rajendra Acharya U et al (2006) Heart rate variability: a review. Med Biol Eng Comput 44(12):1031–1051

    Article  CAS  PubMed  Google Scholar 

  22. Stein PK, Deedwania P (2010) New York Heart Association Functional class influences the impact of diabetes on cardiac autonomic function. J Electrocardiol 43:379–384

    Article  PubMed  Google Scholar 

  23. Stein PK, Kleiger RE (1999) Insights from the study of heart rate variability. Annu Rev Med 50:249–261

    Article  CAS  PubMed  Google Scholar 

  24. Truebner S et al (2006) Compression entropy contributes to risk stratification in patients with cardiomyopathy. Biomed Tech (Berl) 51(2):77–82

    Article  Google Scholar 

  25. Voss A et al (1996) The application of methods of non-linear dynamics for the improved and predictive recognition of patients threatened by sudden cardiac death. Cardiovasc Res 31(3):419–433

    CAS  PubMed  Google Scholar 

  26. Voss A et al (2009) Methods derived from nonlinear dynamics for analysing heart rate variability. Philos Trans A Math Phys Eng Sci 367(1887):277–296

    Article  Google Scholar 

  27. Wessel N et al (2000) Nonlinear analysis of complex phenomena in cardiological data. Herzschrittmachertherapie und Elektrophysiologie 11(3):159–173

    Article  Google Scholar 

  28. Zhang J (2007) Effect of age and sex on heart rate variability in healthy subjects. J Manip Physiol Ther 30(5):374–379

    Article  CAS  Google Scholar 

  29. Ziegler D et al (2006) Selective contribution of diabetes and other cardiovascular risk factors to cardiac autonomic dysfunction in the general population. Exp Clin Endocrinol Diabetes 114(4):153–159

    Article  CAS  PubMed  Google Scholar 

  30. Ziv J, Lempel A (1977) Universal algorithm for sequential data compression. IEEE Trans Inf Ther 23:337–343

    Article  Google Scholar 

  31. (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 93(5):1043–1065

Download references

Acknowledgment

The authors gratefully acknowledge the financial support of the Deutsche Forschungsgemeinschaft (DFG, Vo505/8-1 and Vo505/8-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Voss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heitmann, A., Huebner, T., Schroeder, R. et al. Multivariate short-term heart rate variability: a pre-diagnostic tool for screening heart disease. Med Biol Eng Comput 49, 41–50 (2011). https://doi.org/10.1007/s11517-010-0719-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0719-6

Keywords

Navigation